Summary on Probability

<u>Definition</u> : $P(A) = \frac{\text{no. of elements in } A}{\text{no. of elements in } S} =$	e.g.
$ \underline{Laws:} 1) \underline{} \leq P(A) \leq \underline{} \\ 2) P(A') = $	e.g.
3) $P(A \cup B) =$	e.g.
<u>Conditional Probability</u>: $P(A \mid B) =$	(reduced sample space to B)
e.g.	5
Mutually Exclusive and Independent Events:	
Events	
Cannot occur simultaneously	Occurrence does not influence each other
Mutually Exclusive Events	Independent Events
$P(A \cap B) =$	$P(A \cap B) =$
$\Rightarrow P(A \cup B) =$	or $P(A B) =$ or $P(B A) =$

Note: (1) If *A* and *B* are both independent and mutually exclusive, then $P(A) = _$ or $P(B) = _$. (2) If *A* and *B* are independent events, then *A'* and *B'* are _____ events.

Methods: In solving probability problems, we can use the following methods:

- (I) List or Table of Outcomes -- when sample space is not too _____ so that all possible outcomes can be _____ or _____.
- **Example 1** Two fair dice are thrown. Events *A*, *B* and *C* are defined by
 - A : The first die shows 5.
 - B: The total score is 7.
 - C: The total score is 9.
 - (i) Determine whether A and B are independent
 - (ii) Determine whether A and C are independent

Solution

- (II) Venn Diagram -- when combinations of events such as _____, ___, ..., are involved.
- **Eg.** Given that P(A) = 0.3, P(B) = 0.4 and $P(A \cap B) = 0.1$. Find (i) $P((A \cup B)')$ (ii) $P(A' \cap B)$ (iii) $P(A \cup B')$

- (III) **Permutations and Combinations --** when sample space is _____ and the problem involved permutations and combinations.
- **Eg.** A class consists of 8 boys and 7 girls. Four students are chosen at random to take part in a maths quiz. Find the probability that
 - (i) exactly 2 girls are chosen,
 - (ii) all 4 chosen are girls,
 - (iii) at least 1 boy is chosen.

(IV) **Probability Tree Diagram** -- when the problem involved sequences of events and each sequence has only a _____ possible outcomes.

The **root** of the tree is usually left blank but is convenient to think of it as representing the ______.

Each **node**, such as *A*, *B*, *C*, etc represents an _____.

The **number** indicated on each branch represents the _____ probability of the event at the end node given that all the events at the previous nodes have occurred.

Eg. A bag contains 4 red and 6 black balls. One ball is drawn at random. If it is black, it is replaced in the bag; but if it is red, it is not replaced. A second ball is then drawn. Let R_1 denotes the event "the first ball is red" and R_2 denotes the event "the second ball is red". Find (i) $P(R_1)$ (ii) $P(R_2 | R_1)$ (iii) $P(R_2)$ (iv) $P(R_1 | R_2)$ (v) $P(R_1 \cup R_2) - P(R_1 \cap R_2)$

Summary on Probability/Quek-ChungSL