Summary on Probability

Definition: $\quad \mathrm{P}(A)=\frac{\text { no. of elements in } A}{\text { no. of elements in } \mathrm{S}}=\quad$ e.g.
Laws: 1) __ $\leq \mathrm{P}(A) \leq$
2) $\mathrm{P}\left(A^{\prime}\right)=$
3) $\mathrm{P}(A \cup B)=$
e.g.
e.g.

Conditional Probability: $\quad \mathrm{P}(A \mid B)=$
$=\quad($ reduced sample space to $B)$
e.g.

Mutually Exclusive and Independent Events:

Note: (1) If A and B are both independent and mutually exclusive, then $\mathrm{P}(A)=$ \qquad or $\mathrm{P}(B)=$ \qquad (2) If A and B are independent events, then A^{\prime} and B^{\prime} are \qquad events.

Methods: In solving probability problems, we can use the following methods:
(I) List or Table of Outcomes -- when sample space is not too \qquad so that all possible outcomes can be \qquad or \qquad _.

Example 1 Two fair dice are thrown. Events A, B and C are defined by
A : The first die shows 5 .
B : The total score is 7 .
C : The total score is 9 .
(i) Determine whether A and B are independent
(ii) Determine whether A and C are independent

Solution

(II) Venn Diagram -- when combinations of events such as \qquad , \qquad , ... , are involved.

Eg. Given that $\mathrm{P}(A)=0.3, \mathrm{P}(B)=0.4$ and $\mathrm{P}(A \cap B)=0.1$. Find
(i) $\mathrm{P}\left((A \cup B)^{\prime}\right)$
(ii) $\mathrm{P}\left(A^{\prime} \cap B\right)$
(iii) $\mathrm{P}\left(A \cup B^{\prime}\right)$
(III) Permutations and Combinations -- when sample space is \qquad and the problem involved permutations and combinations.

Eg. A class consists of 8 boys and 7 girls. Four students are chosen at random to take part in a maths quiz. Find the probability that
(i) exactly 2 girls are chosen,
(ii) all 4 chosen are girls,
(iii) at least 1 boy is chosen.
(IV) Probability Tree Diagram -- when the problem involved sequences of events and each sequence has only a \qquad possible outcomes.

The root of the tree is usually left blank but is convenient to think of it as representing the \qquad .
Each node, such as A, B, C, etc represents an \qquad .

The number indicated on each branch represents the \qquad probability of the event at the end node given that all the events at the previous nodes have occurred.

Eg. A bag contains 4 red and 6 black balls. One ball is drawn at random. If it is black, it is replaced in the bag; but if it is red, it is not replaced. A second ball is then drawn.
Let R_{1} denotes the event "the first ball is red" and R_{2} denotes the event "the second ball is red". Find (i) $\mathrm{P}\left(R_{1}\right)$
(ii) $\mathrm{P}\left(R_{2} \mid R_{1}\right)$
(iii) $\mathrm{P}\left(R_{2}\right)$
(iv) $\mathrm{P}\left(R_{1} \mid R_{2}\right)$
(v) $\mathrm{P}\left(R_{1} \cup R_{2}\right)-\mathrm{P}\left(R_{1} \cap R_{2}\right)$

