TJC/Promo 2006/6

$6 \quad$ A geometric progression has first term a (where $a>0$), and common ratio r. The sum of the first n terms is S_{n} and the sum to infinity is S. Given that S_{2} is twice the value of the fifth term, find the value of r. Hence find the least value of n such that S_{n} is within 5% of S.

Solution

Given that $2 T_{5}=S_{2}$, we have $2 a r^{4}=a+a r$,

$$
\text { i.e., } \quad 2 r^{4}-r-1=0 \text {. }
$$

From G.C., $\quad r=-0.648$ or $r=1$. (rejected as $|r|<1$ for S to exist).
For S_{n} is within 5% of S, i.e., $\left|S_{n}-S\right|<0.05 S$,
we have $\quad\left|\frac{a\left(1-r^{n}\right)}{1-r}-\frac{a}{1-r}\right|<\frac{0.05 a}{1-r}$

Since $\frac{a}{1-r}>0($ as $a>0$ and $r=-0.648)$, (1) simplifies to

$$
\begin{aligned}
& \left|\left(1-(-0.648)^{n}\right)-1\right|<0.05 \\
& (0.648)^{n}<0.05 \\
& n \lg (0.648)<\lg (0.05) \\
& n>\frac{\lg (0.05)}{\lg (0.648)}=6.90 \text { (correct to } 3 \text { significant figures) }
\end{aligned}
$$

Hence, minimum value of n is 7 .

N08/I/10

10 (i) A student saves $\$ 10$ on 1 January 2009. On the first day of each subsequent month she saves $\$ 3$ more than in the previous month, so that she saves $\$ 13$ on 1 February 2009, $\$ 16$ on 1 March 2009 , and so on. On what date will she first have saved over $\$ 2000$ in total?
(ii) A second student puts $\$ 10$ on 1 January 2009 into a bank account which pays compound interest at a rate of 2% per month on the last day of each month. She puts a further $\$ 10$ into the account on the first day of each subsequent month.
(a) How much compound interest has her original $\$ 10$ earned at the end of 2 years?
(b) How much in total is in the account at the end of 2 years?
(c) After how many complete months will the total in the account first exceed $\$ 2000$?

Solution

(i) Observe the sequence of amounts (in \$) saved:
$10,13,16, \ldots$
This follows an arithmetic progression with first term 10 and common difference 3 .
Now, $S_{n}>2000$ where n represents the number of terms.
[Use the data from the question: "saved over \$2000 in total".]

$$
\begin{aligned}
& \Rightarrow \frac{n}{2}[2(10)+(n-1)(3)]>2000 \\
& \Rightarrow 10 n+\frac{3}{2} n^{2}-\frac{3}{2} n>2000 \\
& \Rightarrow \frac{3}{2} n^{2}+\frac{17}{2} n-2000>0
\end{aligned}
$$

For $\frac{3}{2} n^{2}+\frac{17}{2} n-2000=0, n=\frac{-\frac{17}{2} \pm \sqrt{\left(\frac{17}{2}\right)^{2}-4\left(\frac{3}{2}\right)(-2000)}}{2\left(\frac{3}{2}\right)}$

$$
=-39.5 \text { or } 33.8
$$

[Recall that
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
are the roots of
$a x^{2}+b x+c=0$.]

For our inequality, $n<-39.5$ or $n>33.8$
$\Rightarrow n>33.8$, since $n>0$
Least $n=34$
Date is 2011, 1 October.
[34 months is equivalent to 2 years and 10 months.]
(ii)(a) Interest earned $=10(1.02)^{24}-10$

$$
=\$ 6.08 \text { (to } 3 \text { s. f.) } \%
$$

[Principal with interest compounded over time is given by $p\left(1+\frac{r}{100}\right)^{t}$ where p is the principal amount, r is the interest rate per month and t is the time in months.

We need to exclude the principal amount to give us the interest earned.]
(b) In month 1, start: 10, end: $1.02(10)$
[Geometric series of 1 term.]
In month 2, start: $1.02(10)+10$, end: $1.02^{2}(10)+1.02(10)$
[Geometric series of 2 terms.]
In month 3, start: $1.02^{2}(10)+1.02(10)+10$, end: $1.02^{3}(10)+1.02^{2}(10)+1.02(10)$
[Geometric series of 3 terms.]
In month 24 , we will end with a total of
$1.02^{24}(10)+1.02^{23}(10)+\ldots+1.02^{2}(10)+1.02(10)$
[Geometric series of 24 terms, following the pattern we saw above.]
$=10 \frac{1.02\left(1.02^{24}-1\right)}{1.02-1}$
$=\$ 310$ (to 3 s. f.) $*$
(c) Let n be the number of complete months.
$10 \frac{1.02\left(1.02^{n}-1\right)}{1.02-1}>2000$ [Use the data from the question: "total...first exceed $\$ 2000$ ".]
$\Rightarrow 1.02^{n}>\frac{2000}{510}+1$
$\Rightarrow n \ln 1.02>\ln \left(\frac{200}{51}+1\right)$ [Take natural logarithm of both sides.]
$\Rightarrow n>80.5$
\therefore total exceeds $\$ 2000$ after 81 complete months. $*$

