RVHS/I/9

It is given that $f(x) = \ln(1 + \sin x)$, where $-\frac{3\pi}{8} \le x \le \frac{3\pi}{8}$.

- (i) Show that $(1+\sin x)f'(x) = \cos x$. [1]
- (ii) By further differentiation of this result, find the Maclaurin series for f(x), up to and including the term in x^3 . Hence, write down the equation of the tangent of y = f(x) at x = 0. [5]

Denote the Maclaurin series of f(x) in (ii) by g(x).

- (iii) On the same diagram, sketch the graphs of y = f(x) and y = g(x) for $-\frac{3\pi}{8} \le x \le \frac{3\pi}{8}$. [2]
- (iv) Find, for $-\frac{3\pi}{8} \le x \le \frac{3\pi}{8}$, the set of values of x for which the value of g(x) is within ± 0.05 of the value of f(x). [2]

(i)	$f(x) = \ln(1 + \sin x)$
	$\therefore f'(x) = \frac{\cos x}{1 + \sin x}$
	$\Rightarrow (1 + \sin x) f'(x) = \cos x \text{ (shown)}$
(ii)	Differentiate with respect to <i>x</i> :
	$(1+\sin x)f''(x)+(\cos x)f'(x)=-\sin x$
	Differentiate with respect to x: $(1+\sin x)f'''(x)+(\cos x)f''(x)-(\sin x)f'(x)+(\cos x)f''(x)=-\cos x$
	At $x=0$: $f(x)=0$, $f'(x)=1$, $f''(x)=-1$, $f'''(x)=1$
	$\therefore f(x) \approx x - \frac{x^2}{2} + \frac{x^3}{6}$
	Equation of tangent of $y = f(x)$ at $x = 0$ is $y = x$.

N2008/P2/1

- 1 Let $f(x) = e^x \sin x$.
 - (i) Sketch the graph of y = f(x) for $-3 \le x \le 3$.
 - (ii) Find the series expansion of f(x) in ascending powers of x, up to and including the term in x^3 . [3]

[2]

[1]

Denote the answer to part (ii) by g(x).

- (iii) On the same diagram as in part (i), sketch the graph of y = g(x). Label the two graphs clearly.
- (iv) Find, for $-3 \le x \le 3$, the set of values of x for which the value of g(x) is within ±0.5 of the value of f(x). [3]

Solution:

(i) [Use the GC to sketch the graph.]

(ii)
$$f(x) = \left(1 + x + \frac{x^2}{2!} + \dots\right) \left(x - \frac{x^3}{3!} + \dots\right)$$

[Refer to the expansions of e^x and $\sin x$ in the formulae booklet.]

$$= x - \frac{x^{3}}{6} + x^{2} + \frac{x^{3}}{2} + \dots$$
 [Expand.]
≈ $x + x^{2} + \frac{1}{3}x^{3}$ �

(iii)

Figure 1 (top) shows both graphs. It is important to draw them in a way that **one is tangent to the other at the origin**.

Figure 2 (bottom) shows the shape of y = g(x) before we draw it with accuracy on the same diagram together with the graph of y = f(x).

(iv) The value of g(x) is within ± 0.5 of the value of f(x) means: |f(x) - g(x)| < 0.5.

From GC, -1.96 < x < 1.56. (We should give the diagram (in dotted borders) as working.]