RVHS/I/9

It is given that $\mathrm{f}(x)=\ln (1+\sin x)$, where $-\frac{3 \pi}{8} \leq x \leq \frac{3 \pi}{8}$.
(i) Show that $(1+\sin x) \mathrm{f}^{\prime}(x)=\cos x$.
(ii) By further differentiation of this result, find the Maclaurin series for $\mathrm{f}(x)$, up to and including the term in x^{3}. Hence, write down the equation of the tangent of $y=\mathrm{f}(x)$ at $x=0$.

Denote the Maclaurin series of $\mathrm{f}(x)$ in (ii) by $\mathrm{g}(x)$.
(iii) On the same diagram, sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ for $-\frac{3 \pi}{8} \leq x \leq \frac{3 \pi}{8}$.
(iv) Find, for $-\frac{3 \pi}{8} \leq x \leq \frac{3 \pi}{8}$, the set of values of x for which the value of $g(x)$ is within ± 0.05 of the value of $\mathrm{f}(x)$.

(i)	$\mathrm{f}(x)=\ln (1+\sin x)$		
	$\therefore \mathrm{f}^{\prime}(x)=\frac{\cos x}{1+\sin x}$		
	$\Rightarrow(1+\sin x) \mathrm{f}^{\prime}(x)=\cos x$ (shown)	\quad	(ii)Differentiate with respect to $x:$ $(1+\sin x) \mathrm{f}^{\prime \prime}(x)+(\cos x) \mathrm{f}^{\prime}(x)=-\sin x$ Differentiate with respect to $x:$ $(1+\sin x) \mathrm{f}^{\prime \prime \prime}(x)+(\cos x) \mathrm{f}^{\prime \prime}(x)-(\sin x) \mathrm{f}^{\prime}(x)+(\cos x) \mathrm{f}^{\prime \prime}(x)=-\cos x$ At $x=0: \mathrm{f}(x)=0, \mathrm{f}^{\prime}(x)=1, \mathrm{f}^{\prime \prime}(x)=-1, \mathrm{f}^{\prime \prime \prime}(x)=1$ $\therefore \mathrm{f}(x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{6}$
:---			

Equation of tangent of $y=\mathrm{f}(x)$ at $x=0$ is $y=x$.

(iii)		
(iv)	To find x such that $\|\mathrm{f}(x)-\mathrm{g}(x)\|<0.05$ Using GC, draw the graph of $y=\|\mathrm{f}(x)-\mathrm{g}(x)\|$ to find the intersection with $y=0.05$. $-0.7745598<x<0.96923979$ Range is $-0.774<x<0.969$.	

N2008/P2/1

$1 \quad$ Let $\mathrm{f}(x)=\mathrm{e}^{x} \sin x$.
(i) Sketch the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant 3$.
(ii) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{3}.

Denote the answer to part (ii) by $\mathrm{g}(x)$.
(iii) On the same diagram as in part (i), sketch the graph of $y=\mathrm{g}(x)$. Label the two graphs clearly.
(iv) Find, for $-3 \leqslant x \leqslant 3$, the set of values of x for which the value of $g(x)$ is within ± 0.5 of the value of $\mathrm{f}(x)$.

Solution:

(i) [Use the GC to sketch the graph.]

[Highlight the important graph features.]
(1) Left end-point: $(-3,-0.00703)$
(2) Minimum turning point: $(-0.785,-0.322)$
(3) Maximum turning point: $(2.36,7.46)$
(4) Right end-point: $(3,2.83)$
(ii) $\mathrm{f}(x)=\left(1+x+\frac{x^{2}}{2!}+\ldots\right)\left(x-\frac{x^{3}}{3!}+\ldots\right)$
[Refer to the expansions of e^{x} and $\sin x$ in the formulae booklet.]

$$
\begin{aligned}
& =x-\frac{x^{3}}{6}+x^{2}+\frac{x^{3}}{2}+\ldots \text { [Expand.] } \\
& \approx x+x^{2}+\frac{1}{3} x^{3}
\end{aligned}
$$

(iii)

Figure 1 (top) shows both graphs. It is important to draw them in a way that one is tangent to the other at the origin.

Figure 2 (bottom) shows the shape of $y=\mathrm{g}(x)$ before
 we draw it with accuracy on the same diagram together with the graph of $y=\mathrm{f}(x)$.
(iv) The value of $\mathrm{g}(x)$ is within ± 0.5 of the value of $\mathrm{f}(x)$ means: $|\mathrm{f}(x)-\mathrm{g}(x)|<0.5$.

From GC, $-1.96<x<1.56 . *$
[We should give the diagram (in dotted borders) as working.]

