Piecewise and Periodic Functions

1 N09/P1/Q4(part)
4 It is given that

$$
\mathrm{f}(x)= \begin{cases}7-x^{2} & \text { for } 0<x \leqslant 2, \\ 2 x-1 & \text { for } 2<x \leqslant 4,\end{cases}
$$

and that $\mathrm{f}(x)=\mathrm{f}(x+4)$ for all real values of x.
(i) Evaluate $\mathrm{f}(27)+\mathrm{f}(45)$.
(ii) Sketch the graph of $y=\mathrm{f}(x)$ for $-7 \leqslant x \leqslant 10$.

Solution

4i) $\quad \mathrm{f}(27)+\mathrm{f}(45)$

$$
=\mathrm{f}(23)+\mathrm{f}(41)
$$

$$
=\mathrm{f}(19)+\mathrm{f}(37)
$$

:

$$
=f(3)+f(1)
$$

$$
=5+6
$$

$$
=11
$$

(ii)

Teaching Point:

Students should be advised to sketch a clear and properly-labelled graph.
2. Given $\mathrm{f}(x)=x^{2} \quad$ for $0<x \leq 1$,
$\mathrm{f}(x)=3-2 x \quad$ for $1<x \leq 3$
and $\quad \mathrm{f}(x+3)=\mathrm{f}(x) \quad$ for all values of x.
Sketch the graph for $-4 \leq x \leq 7$. Evaluate $\mathrm{f}(26)$.

Solution:

$$
f(26)=f(24+2)=f(2)=-1
$$

