Specimen Paper/2007/1/8

The positive numbers x_{n} satisfy the relation

$$
x_{n+1}=\sqrt{x_{n}+5}, \text { for } n=1,2,3, \ldots .
$$

As $n \rightarrow \infty, x_{n} \rightarrow l$.
(i) Find (in either order) the value of l to 3 decimal places and the exact value of l.
(ii) Prove that $\left(x_{n+1}\right)^{2}-l^{2}=x_{n}-l$.
(iii) Hence, show that if $x_{n}>l, x_{n}>x_{n+1}>l$.

Solution

(i) Since when $n \rightarrow \infty, x_{n} \rightarrow l$ and also $x_{n+1} \rightarrow l$

Hence, the recurrence relation $x_{n+1}=\left(x_{n}+5\right)^{1 / 2}$ tends to $l=(l+5)^{1 / 2}$

$$
\begin{aligned}
& \Rightarrow \quad l^{2}-(l+5)=0 \\
& \Rightarrow \quad l^{2}-l-5=0 \\
& \Rightarrow l=\frac{1 \pm \sqrt{1-4(-5)}}{2} \\
& \Rightarrow l=\frac{1 \pm \sqrt{21}}{2} \text { or } 2.791 \text { (3 d.p.) }
\end{aligned}
$$

(ii) $\quad\left(x_{n+1}\right)^{2}-l^{2}=\left(x_{n}+5\right)-(l+5)=x_{n}-l$ (proved)
(iii)

$$
\begin{aligned}
x_{n}>l \quad & \Rightarrow x_{n}-l>0 . \\
& \Rightarrow\left(x_{n+1}\right)^{2}-l^{2}>0 \\
& \Rightarrow\left(x_{n+1}+l\right)\left(x_{n+1}-l\right)>0 \\
& \Rightarrow\left(x_{n+1}-l\right)>0 \quad \because\left(x_{n+1}-l\right)>0 \\
& \Rightarrow x_{n+1}>l
\end{aligned}
$$

$$
\left(x_{n+1}\right)^{2}-l^{2}=x_{n}-l
$$

$$
\Rightarrow\left(x_{n+1}+l\right)\left(x_{n+1}-l\right)=x_{n}-l
$$

$$
\Rightarrow\left(x_{n+1}-l\right)=\frac{x_{n}-l}{x_{n+1}+l}<x_{n}-l \quad\left(\because\left(x_{n+1}+l\right)>1\right)
$$

$$
\Rightarrow x_{n+1}<x_{n}
$$

$$
\therefore x_{n}>x_{n+1}>l
$$

MJC/Prelim2010/1/3

A sequence of positive real numbers $x_{1}, x_{2}, x_{3}, \ldots$ satisfies the recurrence relation

$$
x_{n+1}=\frac{3 x_{n}}{\sqrt{2+x_{n}}}
$$

for $n \geq 1$.
(i) Given that as $n \rightarrow \infty, x_{n} \rightarrow \alpha$, find the exact value of α.
(ii) Show that this sequence is
(a) strictly increasing for $0<x_{n}<\alpha$,
(b) strictly decreasing for $x_{n}>\alpha$.

Solution

(i)	As $n \rightarrow \infty, x_{n} \rightarrow \alpha \& x_{n+1} \rightarrow \alpha$ $\begin{aligned} & \Rightarrow \alpha=\frac{3 \alpha}{\sqrt{2+\alpha}} \Rightarrow \alpha^{2}=\frac{9 \alpha^{2}}{2+\alpha} \\ & \Rightarrow \alpha^{2}(2+\alpha)-9 \alpha^{2}=0 \\ & \Rightarrow \alpha^{2}(\alpha-7)=0 \Rightarrow \alpha=0 \text { or } \alpha=7 . \end{aligned}$ Thus $\alpha=7$ since $\alpha>0$. Method 1 [Graphical] $x_{n+1}-x_{n}=\frac{3 x_{n}}{\sqrt{2+x_{n}}}-x_{n}$ Sketch $y=x_{n+1}-x_{n}=\frac{3 x_{n}}{\sqrt{2+x_{n}}}-x_{n}$ From the graph: For $0<x_{n}<\alpha: x_{n+1}-x_{n}>0 \Rightarrow x_{n+1}>x_{n}$ Therefore the sequence is strictly increasing. For $x_{n}>\alpha: x_{n+1}-x_{n}<0 \Rightarrow x_{n+1}<x_{n}$ Therefore the sequence is strictly decreasing. [Shown]

