Specimen Paper/2007/1/8

The positive numbers x_n satisfy the relation

$$x_{n+1} = \sqrt{x_n + 5} , \text{ for } n = 1, 2, 3, \dots .$$
 As $n \to \infty, x_n \to l$.

- Find (in either order) the value of l to 3 decimal places and the exact value of l. (i)
- Prove that $(x_{n+1})^2 l^2 = x_n l$. (ii)
- (iii) Hence, show that if $x_n > l$, $x_n > x_{n+1} > l$.

Solution

- (i) Since when $n \to \infty$, $x_n \to l$ and also $x_{n+1} \to l$ Hence, the recurrence relation $x_{n+1} = (x_n + 5)^{1/2}$ tends to $l = (l+5)^{1/2}$

$$\Rightarrow l^{2} - (l+5) = 0$$

$$\Rightarrow l^{2} - l - 5 = 0$$

$$\Rightarrow l = \frac{1 \pm \sqrt{1 - 4(-5)}}{2}$$

$$\Rightarrow l = \frac{1 \pm \sqrt{21}}{2} \text{ or } 2.791 \text{ (3 d.p.)}$$

(ii)
$$(x_{n+1})^2 - l^2 = (x_n + 5) - (l+5) = x_n - l$$
 (proved)

(iii)
$$x_n > l \implies x_n - l > 0.$$

$$\Rightarrow (x_{n+1})^2 - l^2 > 0$$

$$\Rightarrow (x_{n+1} + l)(x_{n+1} - l) > 0$$

$$\Rightarrow (x_{n+1} - l) > 0 \quad \because (x_{n+1} - l) > 0$$

$$\Rightarrow x_{n+1} > l$$

$$(x_{n+1})^2 - l^2 = x_n - l$$

$$\Rightarrow (x_{n+1} + l)(x_{n+1} - l) = x_n - l$$

$$\Rightarrow (x_{n+1} - l) = \frac{x_n - l}{x_{n+1} + l} < x_n - l \qquad (\because (x_{n+1} + l) > 1)$$

$$\Rightarrow x_{n+1} < x_n$$

$$\therefore x_n > x_{n+1} > l$$

MJC/Prelim2010/1/3

A sequence of positive real numbers x_1, x_2, x_3, \dots satisfies the recurrence relation

$$x_{n+1} = \frac{3x_n}{\sqrt{2+x_n}}$$

for $n \ge 1$.

(i) Given that as $n \to \infty$, $x_n \to \alpha$, find the exact value of α .

[2]

[2]

[2]

- (ii) Show that this sequence is
 - (a) strictly increasing for $0 < x_n < \alpha$,
 - **(b)** strictly decreasing for $x_n > \alpha$.

Solution

As $n \to \infty, x_n \to \alpha \& x_{n+1} \to \alpha$ (i) $\Rightarrow \alpha = \frac{3\alpha}{\sqrt{2+\alpha}} \Rightarrow \alpha^2 = \frac{9\alpha^2}{2+\alpha}$ $\Rightarrow \alpha^{2} (2+\alpha) - 9\alpha^{2} = 0$ $\Rightarrow \alpha^{2} (\alpha - 7) = 0 \Rightarrow \alpha = 0 \text{ or } \alpha = 7.$ Thus $\alpha = 7$ since $\alpha > 0$. Method 1 [Graphical] (ii) $x_{n+1} - x_n = \frac{3x_n}{\sqrt{2 + x_n}}$ Sketch $y = x_{n+1} - x_n = \frac{3x_n}{\sqrt{2 + x_n}} - x_n$ From the graph: For $0 < x_n < \alpha : x_{n+1} - x_n > 0 \Longrightarrow x_{n+1} > x_n$ Therefore the sequence is strictly increasing. For $x_n > \alpha : x_{n+1} - x_n < 0 \Longrightarrow x_{n+1} < x_n$ Therefore the sequence is strictly decreasing. [Shown]

