AJC/Mid-yr CT 2010/Q14

With reference to a fixed origin O, the points P and Q have position vectors $3 \underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k}$ and $5 \underset{\sim}{i}+3 \underset{\sim}{j}+\alpha \underset{\sim}{k}$, where $\alpha \in \square$. The line ℓ has equation $\underset{\sim}{r}=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}\beta \\ -1 \\ 1\end{array}\right), \quad \lambda \in \mathfrak{R}$ and the plane Π_{1} has Cartesian equation $3 z-4 y=10$.
(i) Given that the shortest distance from Q to the plane Π_{1} is 1 unit. Find the value of α and determine, with reason, whether Q and the origin O are on the same side or on opposite sides of Π_{1}.
(ii) If the maximum angle between line ℓ and plane Π_{1} is $\frac{\pi}{6}$. Find the range of values of β.
(iii) Find the Cartesian equation of the plane Π_{2} that passes through point P and contains the line ℓ when $\beta=1$. Hence describe, with reasons, the geometrical relationship of the three planes Π_{1}, Π_{2} and Π_{3}, where plane Π_{3} has Cartesian equation $11 x-3 y-28 z=1$.
$\Pi_{1}: \underset{\sim}{r} \cdot\left(\begin{array}{c}0 \\ -4 \\ 3\end{array}\right)=10 \Rightarrow \underset{\sim}{r} \cdot \frac{1}{5}\left(\begin{array}{c}0 \\ -4 \\ 3\end{array}\right)=\frac{10}{5}=2$
(i) Distance from Q to $\Pi_{1}=\left(\begin{array}{c}5 \\ 3 \\ \alpha\end{array}\right) \cdot \frac{1}{5}\left(\begin{array}{c}0 \\ -4 \\ 3\end{array}\right)-2\left|=\left|\frac{3 \alpha-12}{5}-2\right|=\left|\frac{3 \alpha-22}{5}\right|\right.$
$\Rightarrow\left|\frac{3 \alpha-22}{5}\right|=1 \Rightarrow 3 \alpha-22= \pm 5 \Rightarrow \alpha=9$ or $17 / 3$ (rejected as α is an integer)
Q and O are on opposite sides of the plane
[Reason: distance from Q to $\mathrm{O}=\left(\begin{array}{c}5 \\ 3 \\ \alpha\end{array}\right) \cdot \frac{1}{5}\left(\begin{array}{c}0 \\ -4 \\ 3\end{array}\right) \frac{3 \alpha-12}{5}=3$ and distance from Π_{1} to O is 2]
(ii) Angle between Π_{1} and ℓ is $=\sin ^{-1}\left|\frac{(3)(1)}{5 \cdot \sqrt{2+\beta^{2}}}\right|=\sin ^{-1} \frac{7}{5 \sqrt{2+\beta^{2}}}$
As $\sin \frac{\pi}{6}=\frac{1}{2}$ and sine function is increasing in $1^{\text {st }}$ quadrant,

$$
\frac{7}{5 \sqrt{2+\beta^{2}}} \leq \frac{1}{2} \quad \Rightarrow \beta^{2} \geq \frac{146}{25} \quad \Rightarrow \beta \geq \frac{\sqrt{146}}{5}(=2.416609 \ldots) \quad \text { or } \quad \beta \leq-\frac{\sqrt{146}}{5}
$$

(iii)Vector // to $\Pi_{2}=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)-\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right)$

Normal vector of Π_{2} is $\left(\begin{array}{c}1 \\ -3 \\ 2\end{array}\right) \times\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
Equation of Π_{2} is $\underset{\sim}{r} \cdot\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=-6$
Hence Cartesian equation of the plane Π_{2} is $-x+y+2 z=-6$.

$$
\begin{array}{ccr}
\Pi_{1} & : & 0-4 y+3 z=10 \\
\Pi_{2} & : & -x+y+2 z=-6 \\
\Pi_{3} & : & 11 x-3 y-28 z=1
\end{array}
$$

Augmented matrix $A=\left(\begin{array}{ccc|c}0 & -4 & 3 & 10 \\ -1 & 1 & 2 & -6 \\ 11 & -3 & -28 & 1\end{array}\right) \quad \operatorname{rref}(A)=\left(\begin{array}{ccc|c}1 & 0 & -11 / 4 & 0 \\ 0 & 1 & -3 / 4 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Since the last equation is inconsistent, therefore the system of equations has no solutions.
Geometrical interpretation: the 3 planes have no common point. And since their normals are not parallel, the 3 planes form a triangular prism.

