AJC/Mid-yr CT 2010/Q14

With reference to a fixed origin O, the points P and Q have position vectors 3i + j - 2k

and $5i + 3j + \alpha k$, where $\alpha \in \square$. The line ℓ has equation $\mathbf{r} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} \beta \\ -1 \\ 1 \end{pmatrix}$, $\lambda \in \Re$ and

the plane Π_1 has Cartesian equation 3z - 4y = 10.

- Given that the shortest distance from Q to the plane Π_1 is 1 unit. Find the value of α and determine, with reason, whether Q and the origin O are on the same side or on opposite sides of Π_1 . [3]
- If the maximum angle between line ℓ and plane Π_1 is $\frac{\pi}{6}$. Find the range of values of β . [3]
- (iii) Find the Cartesian equation of the plane Π_2 that passes through point P and contains the line ℓ when $\beta = 1$. Hence describe, with reasons, the geometrical relationship of the three planes Π_1 , Π_2 and Π_3 , where plane Π_3 has Cartesian equation 11x-3y-28z=1. [4]

$$\Pi_1: \quad \mathbf{r} \cdot \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = 10 \quad \Rightarrow \quad \mathbf{r} \cdot \frac{1}{5} \begin{pmatrix} 0 \\ -4 \\ 3 \end{pmatrix} = \frac{10}{5} = 2$$

(i) Distance from Q to $\Pi_1 = \begin{bmatrix} 5 \\ 3 \\ \alpha \end{bmatrix} \bullet \frac{1}{5} \begin{bmatrix} 0 \\ -4 \\ 3 \end{bmatrix} - 2 = \left| \frac{3\alpha - 12}{5} - 2 \right| = \left| \frac{3\alpha - 22}{5} \right|$

 $\Rightarrow \left| \frac{3\alpha - 22}{5} \right| = 1 \Rightarrow 3\alpha - 22 = \pm 5 \Rightarrow \alpha = 9 \text{ or } 17/3 \text{ (rejected as } \alpha \text{ is an integer)}$

Q and Q are on opposite sides of the plane

As $\sin \frac{\pi}{6} = \frac{1}{2}$ and sine function is increasing in 1st quadrant,

$$\frac{7}{5\sqrt{2+\beta^2}} \leq \frac{1}{2} \qquad \Rightarrow \beta^2 \geq \frac{146}{25} \qquad \Rightarrow \ \beta \geq \frac{\sqrt{146}}{5} \ (=2.416609..) \quad \text{or} \quad \beta \leq -\frac{\sqrt{146}}{5}$$

(iii) Vector // to
$$\Pi_2 = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$

Normal vector of
$$\Pi_2$$
 is $\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

Equation of
$$\Pi_2$$
 is $r \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = -6$

Hence Cartesian equation of the plane Π_2 is -x + y + 2z = -6.

$$\Pi_1$$
: $0-4y+3z=10$

$$\Pi_1$$
 : $0-4y+3z=10$
 Π_2 : $-x+y+2z=-6$
 Π_3 : $11x-3y-28z=1$

$$\Pi_3$$
: $11x - 3y - 28z = 1$

Augmented matrix
$$A = \begin{pmatrix} 0 & -4 & 3 & | & 10 \\ -1 & 1 & 2 & | & -6 \\ 11 & -3 & -28 & | & 1 \end{pmatrix}$$
 $\operatorname{rref}(A) = \begin{pmatrix} 1 & 0 & -\frac{11}{4} & | & 0 \\ 0 & 1 & -\frac{3}{4} & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}$

Since the last equation is inconsistent, therefore the system of equations has no solutions. Geometrical interpretation: the 3 planes have no common point. And since their normals are not parallel, the 3 planes form a triangular prism.