Solution for DE Extra Question

The variables x and y are related by the differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y+\frac{2}{x}=0$.
Show that by means of the substitution $y=u x$, the differential equation may be reduced to
$\frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{2}{x^{3}}$.
Hence, or otherwise, find the general solution for y in terms of x.
Sketch, for $x>0$, two members of the family of solution curves corresponding to a positive value and a negative value of the arbitrary constant.

Solution

Given $x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y+\frac{2}{x}=0 \ldots$ (1)
Let $y=u x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=u+x \frac{\mathrm{~d} u}{\mathrm{~d} x}$
Sub into eq (1)
$x\left(u+x \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)-u x+\frac{2}{x}=0$
$x u+x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}-u x+\frac{2}{x}=0$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=-\frac{2}{x^{3}}($ Shown $)$
$u=\int-\frac{2}{x^{3}} d x$
$u=-2\left[\frac{x^{-3+1}}{-2}\right]+C$
$\frac{y}{x}=\frac{1}{x^{2}}+C$
$y=\frac{1}{x}+C x$

The rate at which a chemical evaporates at room temperature is proportional to the amount of substance which has not yet evaporated. If the initial amount of chemical was 500 g and the amount which has evaporated at time t is x. Write down a differential equation involving x and t. Show that $x=500-A e^{-k t}$, where A and k are constants.

Show that the time taken for half the chemical to evaporate is $\frac{1}{k} \ln 2$.

Solution

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=a(500-x) \\
& \int \frac{1}{500-x} \mathrm{~d} x=\int a \mathrm{~d} t \\
& -\ln |500-x|=a t+C \\
& \ln |500-x|=-a t-C \\
& 500-x=e^{-a t-C} \\
& x=500-A e^{-a t}, A=e^{-C} \\
& x=500-A e^{-k t}, k=a \text { (Shown) } \\
& \text { When } t=0, x=0 \\
& 0=500-A \\
& A=500 \\
& \therefore x=500-500 e^{-k t} \\
& \text { When } x=250(\text { Half the chemical) } \\
& 250=500-500 e^{-k t} \\
& 500 e^{-k t}=250 \\
& e^{-k t}=\frac{250}{500}=\frac{1}{2} \\
& -k t=\ln \frac{1}{2} \\
& t=-\frac{1}{k} \ln \frac{1}{2} \\
& t=\frac{1}{k} \ln 2(\text { shown })
\end{aligned}
$$

