Binomial Distribution

1

(i) $\quad \mathrm{A}=$ no. of ambidextrous people in a sample of $10 \sim \mathrm{~B}(10,0.05)$

$$
P(A \geq 1)=1-P(A=0)=1-0.59873693=0.40126307=0.401
$$

(ii) $\mathrm{L}=$ no. of left-handed people in a sample of $10 \sim \mathrm{~B}(10,0.15)$
$P(L<3)=P(L \leq 2)=0.82019648=0.820$

2

(i) $\mathrm{E}(\mathrm{X})=\mathrm{np}=22(0.2)=4.4$
(ii) $\quad \mathrm{X} \sim \mathrm{B}(22,0.2)$
$\mathrm{P}(\mathrm{X} \geq 5)=1-\mathrm{P}(\mathrm{X} \leq 4)$

$$
=1-0.543=0.457
$$

(iii) $\mathrm{P}(\mathrm{X}=3)=0.17755$
$\left.\begin{array}{l}\mathrm{P}(\mathrm{X}=4)=0.21084 \\ \mathrm{P}(\mathrm{X}=5)=0.18976\end{array}\right\} 4$ applicants is most likely

3 (i) Let X be the random variable number of damaged potatoes out of a sample of 12 potatoes.
Then $\mathrm{X} \sim \mathrm{B}(12,0.1)$
$\mathrm{P}(\mathrm{X}=3)={ }^{12} \mathrm{C}_{3}(0.1)^{3}(0.9){ }^{9}$

$$
=0.0852325 \approx 0.0852
$$

(ii) Let Y be the random variable number of damaged potatoes out of a sample of n potatoes.

Then $\mathrm{Y} \sim \mathrm{B}(n, 0.1)$
$\mathrm{P}(\mathrm{Y} \geq 3)>0.06$
$1-\mathrm{P}(\mathrm{Y} \leq 2)>0.06$
$\mathrm{P}(\mathrm{Y} \leq 2)<0.94$
Using GC, $\operatorname{binomcdf}(9,0.1,2)=0.9470$
binomcdf($10,0.1,2)=0.9298$
binomcdf(11, 0.1, 2) $=0.9104$
Hence, least value of $n=10$.
$4 \quad p \approx \frac{600}{1500}=\frac{2}{5}$
Let X rep the no. of seeds that will germinate out of 24 .

$$
X \sim \mathrm{~B}\left(24, \frac{2}{5}\right)
$$

$\mathrm{P}(X \geq 12)=1-\mathrm{P}(X \leq 11)$

$$
=0.213
$$

$\mathrm{P}(X=2)=0.209$
$\mathrm{P}(X=3)=\underline{0.279}$
$\mathrm{P}(X=4)=0.232$
\therefore Most probable no. that will germinate in a batch of eight is 3 .
Let Y rep the no. of seeds that will germinate in a batch of 8 .

$$
Y \sim \mathrm{~B}\left(8, \frac{2}{5}\right)
$$

$\mathrm{P}(Y>4)=1-\mathrm{P}(Y \leq 4)=0.1736704$.
P (only one batch produces more than 4 germinating seeds)
$=3 \mathrm{P}(Y>4)[\mathrm{P}(Y \leq 4)]^{2}$
$=3(0.1736704)[1-0.1736704]^{2}$
$=0.356$
5 (i) Let X be the number of students from a class that will be late for school in

$$
\begin{aligned}
& \text { a day } \\
& X \sim B(26,0.08) \\
& P(X \geq 3)=1-P(X \leq 2) \\
& =0.3457357105=0.346(3 \text { sig. figs })
\end{aligned}
$$

(ii) Probability $=(0.3457357105) \times(1-0.3457357105)^{4}=0.0634$

6

a Let X be the r.v. "number of red balls". $X \sim \mathrm{~B}(n, p)$.
$n p=10.8$ and $n p q=4.32$
$\Rightarrow q=\frac{4.32}{10.8}=0.4, p=0.6, n=\frac{10.8}{0.6}=18$
$P(X \geq 16)=1-P(X \leq 15)=0.00823$
bi
$1-\left(\frac{3}{7}\right)^{n}>0.999 \Rightarrow\left(\frac{3}{7}\right)^{n}<0.001$
$n>\ln (0.001) / \ln \left(\frac{3}{7}\right) \Rightarrow n>8.15$
A sample size of at least 9 clients is needed.

7 (a) Let X be the no. of defective televisions
Then $X \square B(20,0.1)$

$$
P(X \leq 2)=\operatorname{binomcdf}(20,0.1,2)=0.677
$$

(b) Required probability $=[1-P(X \leq 2)]^{4}=[1-0.67693]^{4}$

$$
=0.0109
$$

(c) $P(X \leq 7 \mid X \geq 3)=\frac{P(3 \leq X \leq 7)}{P(X \geq 3)}$

$$
\begin{aligned}
& =\frac{P(X \leq 7)-P(X \leq 2)}{1-P(X \leq 2)} \\
& =\frac{0.999584-0.67692}{0.323073}=0.999
\end{aligned}
$$

8

Let X be the no of defective articles out of 50 .
$\mathrm{E}(X)=50(0.02)=1$
$\mathrm{P}(X \geq 2)$
$=1-\mathrm{P}(X \leq 1)$
$=0.26423$
$=0.264$ (3 sf)
$P(X \leq 4 \mid X \geq 2)$
$=\frac{P(2 \leq X \leq 4)}{P(X \geq 2)}$
$=\frac{0.26102}{0.26423}=0.988(3 \mathrm{sf})$

9 (i) Let X be the number of employees, out of n, with good performance.

$$
\begin{aligned}
& \quad X \square B(n, 0.26) \\
& P(X \geq 1) \leq 0.96 \\
& 1-P(X=0) \leq 0.96 \\
& P(X=0) \geq 0.04 \\
& \binom{n}{0}(0.26)^{0}(1-0.26)^{n-0} \geq 0.04 \\
& (0.74)^{n} \geq 0.04 \\
& n \leq \frac{\ln (0.04)}{\ln (0.74)} \\
& n \leq 10.6902 \\
& \text { greatest } n=10
\end{aligned}
$$

(ii) Let Y be the number of employees, out of 200, with excellent performance.

$$
Y \square B(200,0.04) \approx N(8,7.68)
$$

since n is large and $n p>5$ and $n q>5$.

$$
\begin{aligned}
P(Y>7)=P(Y \geq 8)= & P(Y>7.5) \\
& =0.572
\end{aligned}
$$

(iii) Let W be the number of employees, out of 20, with average or poor performance.

$$
\begin{aligned}
& P(W \geq 12 \mid W<17) \\
& =\frac{P(W \geq 12 \cap W<17)}{P(W<17)} \\
& =\frac{P(12 \leq W \leq 16)}{P(W \leq 16)} \\
& =\frac{P(W \leq 16)-P(W \leq 11)}{P(W \leq 16)} \\
& =\frac{0.8929131955-0.1133314628}{0.8929131955} \\
& =0.873
\end{aligned}
$$

10i	Let $\mathrm{X}=$ "no of interviewers that will accept the candidate in the first round" $\begin{aligned} & \mathrm{X} \sim \mathrm{~B}(10,0.9) \\ & P(X \geq 9)=1-P(X \leq 8) \\ & =1-0.26390107 \\ & =0.736 \end{aligned}$
9ii	Prob of qualifying for a scholarship $=0.73609893 \times(0.8)^{5}=0.241$ (3.s.f.)
	Let $\mathrm{W}=$ "no of candidates that qualify for the scholarship out of n candidates" $\begin{gathered} \mathrm{W} \sim \mathrm{~B}(\mathrm{n}, 0.241) \\ P(W \geq 2) \geq 0.98 \end{gathered}$
iii	$\begin{aligned} & 1-P(W=0)-P(W=1) \geq 0.98 \\ & \quad 1-(0.759)^{n}-n(0.241)(0.759)^{n-1} \geq 0.98 \\ & \quad \text { Using GC, } \mathrm{n} \geq 21.7 \\ & \quad \text { Least } \mathrm{n}=22 \end{aligned}$

