Permutations and Combinations

$\mathbf{1 (i)}$ (ii)	YY E E S T R D A No. of arrangements $=\frac{8!}{2!}=20160$ No. of arrangements $=6!\times\binom{ 7}{2}=15120$ or No. of arrangements $=\frac{8!}{2!}-7!=15120$
2	B A R P B A P A P A Case 1: 3 identical No. of code words $=2$ Case 2: 2 same No. of code words $=\binom{3}{1} \times\binom{ 3}{1} \times \frac{3!}{2!}=27$ Case 3: All different No. of code words $={ }^{4} P_{3}=24$ Total number of code words $=2+27+24=53$
3(a)	$\begin{aligned} & \underbrace{\text { AT } 7 \text { others }}_{8 \text { items }} \\ & \begin{aligned} \text { Number of ways } & =\frac{8!}{3!} \times 2! \\ & =13440 \end{aligned} \end{aligned}$
(b)	Case 1: EEE Number of ways $=1$ Case 2: EE 1 others Number of ways $={ }^{6} C_{1} \times \frac{3!}{2!}=18$ Case 3: E 2 others Case 4: \quadNumber of ways $={ }^{6} C_{2} \times 3!=90$ Number of ways $={ }^{6} P_{3}=120$ Alternatively, combining Case 3 and Case $4:$ All letters are different: ${ }^{7} P_{3}=210$ Total number of ways $=1+18+90+120=229$

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
4(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
No. of different 4-digit numbers \(=3!\times 3=18\) \\
CUCUMBER \\
Case 1: all letters are different. \\
No. of 4-letter code words \(={ }^{6} \mathrm{P}_{4}=360\) \\
Case 2: one pair of repeated letters. \\
No. of 4-letter code words \(={ }^{2} C_{1} \times{ }^{5} C_{2} x \frac{4!}{2!}=240\) \\
Case 3: two pairs of repeated letters. \\
No. of 4-letter code words \(=\frac{4!}{2!2!}=6\) \\
Total no. of 4-letter code words \(=606\)
\end{tabular} \\
\hline \begin{tabular}{l}
5(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& { }^{40} \mathrm{C}_{2}=780 \\
\& 5!\mathrm{X} 2^{5}=3840
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\[
6(a)
\] \\
(b)
\end{tabular} \& No of ways \(=\frac{\binom{11}{3}\binom{8}{3}\binom{5}{3}\binom{2}{2}}{3!}=15400\)
\[
\text { No of ways }=(8-1)!\times(4)(3) \times 2=120960
\] \\
\hline \begin{tabular}{l}
7(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
No of ways \(=8!5!=4838400\) \\
No of ways \(=\binom{7}{1} 2!5!6!2!=2419200\) \\
No of ways \(=7!5!=604800\)
\end{tabular} \\
\hline 8(i)

(ii) \& | Taking each student and his or her parents as a unit, the number of ways to arrange them and the 3 male teacher in a circle $=(5-1)$! |
| :--- |
| Each student and parents can arrange themselves in 2 ! ways such that the student is seated between parents. |
| As the 3 female teachers must be separated, the number of ways to arrange them $={ }^{5} P_{3}$ |
| Therefore, the total number of arrangements $=(5-1)!(2!)(2!)\left({ }^{5} P_{3}\right)=5760$ |
| Taking the 3 male teachers as a unit and arranging all of them in a straight line (since seats are numbered), the number of ways to arrange all of them $=(10!)(3!)$ |
| If the 3 male teachers are seated at seat number $1,2,12$ or $1,11,12$, the number of ways to arrange them $=(9!)(3!)(2)$ |
| Therefore, the total number of arrangements $=(10!)(3!)+(9!)(3!)(2)=26127360$ |

\hline
\end{tabular}

	Alternative: Number of arrangements in a circle without numbering $=(9!)(3!)$ Since there are 12 people in total, therefore the total number of arrangements $=(9!)(3!)(12)=26127360$
9 (i) (ii)	No. of ways the committee can be formed $={ }^{4} C_{3}{ }^{10} C_{5}+{ }^{4} C_{4}{ }^{10} C_{4}=1218$ No. of ways the committee can be seated without restriction $=(8-1)!=5040$ No. of ways the committee can be seated such that no two girls are seated next to each other $=4!(5)(4)(3)=1440$ No. of ways the committee can be seated when there are two absentees $=\frac{(8-1)!}{2!}$ $\begin{aligned} & =2520 \\ & \text { or }(6-1)!{ }^{6} C_{2}+(7-1)!=2520 \end{aligned}$
$\begin{gathered} \hline 10(\mathbf{a})(\mathbf{i}) \\ \text { (ii) } \\ \text { (b)(i) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} & \text { Number of ways }=5!\times 6!=86400 \\ & \text { Number of ways }=C_{2}^{8} \times 2!\times 2!\times 7!=564480 \\ & \text { Number of ways }=4!\times 5!=2880 \\ & \text { Number of ways }=4!\times 3 \times 4!=1728 \\ & \hline \end{aligned}$
11(i) (ii) (iii) (iv)	$12!=479001600$ $4!\times 6!\times 2=34560$ $10!\times 3!=21772800$ $5!\times 7!\times 2=1209600$
12(i) (ii) (iii)	Number of ways $={ }^{12} C_{4} \times{ }^{8} C_{4} \times{ }^{4} C_{4} \times(4!)^{3}$ or $12!=479001600$ Number of ways $=\left({ }^{6} C_{2} \times{ }^{4} C_{2} \times{ }^{2} C_{2}\right)^{2} \times(4!)^{3}=111974400$ Number of ways $=\left({ }^{6} C_{2} \times{ }^{4} C_{2} \times{ }^{2} C_{2}\right)^{2} \times(2 \times 2!\times 2!)^{3}=4147200$

