Permutations and Combinations

1(i)	YY E E S T R D A
	No. of arrangements = $\frac{8!}{2!} = 20160$
(ii)	$\begin{vmatrix} \mathbf{Y}\mathbf{Y} & \mathbf{S} & \mathbf{T} & \mathbf{R} & \mathbf{D} & \mathbf{A} \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow & \uparrow$
	No. of arrangements = $6! \times \binom{7}{2} = 15120$
	or
	No. of arrangements = $\frac{8!}{2!} - 7! = 15120$
2	B A R P B A P A P A P
	Case 1: 3 identical No. of code words = 2
	Case 2: 2 same
	No. of code words = $\binom{3}{1} \times \binom{3}{1} \times \frac{3!}{2!} = 27$
	Case 3: All different
	No. of code words = ${}^{4}P_{3} = 24$
3(a)	$\begin{array}{c} 1 \text{ otal number of code words} = 2 + 27 + 24 = 53 \\ \hline \text{AT} 7 \text{ others} \end{array}$
	8 items
	Number of ways = $\frac{8!}{3!} \times 2!$
	= 13440
(b)	Case 1 : EEE
	Number of ways = 1 Case 2 : $EE 1$ others
	Number of ways = ${}^{6}C_{1} \times \frac{3!}{2!} = 18$
	Case 3 : E 2 others
	Number of ways = ${}^{6}C_{2} \times 3! = 90$
	Case 4 : 3 others
	Number of ways = ${}^{0}P_{3} = 120$
	Alternatively, combining Case 5 and Case 4: All letters are different: ${}^{7}P_{-} = 210$
	Total number of ways = $1 + 18 + 90 + 120 = 229$

4(9)	
יומו	
	No. of different 4-digit numbers = $3! \times 3 = 18$
(b)	CUCUMBER
	Case 1: all letters are different
	No. of 4-letter code words = ${}^{6}P_{4} = 360$
	Case 2: one pair of repeated letters.
	No. of 4-letter code words = ${}^{2}C_{1}x^{5}C_{2}x\frac{4!}{2!} = 240$
	Case 3: two pairs of repeated letters.
	No. of 4-letter code words = $\frac{4!}{2!2!} = 6$
	Total no. of 4-letter code words = 606
5(a)	$^{40}C_2 = 780$
	$51 \times 2^5 - 2840$
(0)	(11)(8)(5)(2)
6(a)	No of ways = $\frac{\binom{11}{3}\binom{3}{3}\binom{3}{2}\binom{2}{2}}{3!} = 15400$
(b)	No of ways = $(8-1)! \times (4)(3) \times 2 = 120960$
7(i)	No of ways = 8!5! = 4838400
(ii)	No of ways = $\binom{7}{1}$ 2!5!6!2!= 2419200
(iii)	No of ways = $7!5! = 604800$
8(i)	Taking each student and his or her parents as a unit, the number of ways to
	arrange them and the 3 male teacher in a circle $= (5-1)!$
	student is seated between parents.
	As the 3 female teachers must be separated, the number of ways to arrange them $= {}^{5}P_{3}$
	Therefore, the total number of arrangements = $(5-1)!(2!)(2!)(5P_3) = 5760$
(ii)	Taking the 3 male teachers as a unit and arranging all of them in a straight line (since seats are numbered), the number of ways to arrange all of them $= (10!)(3!)$
	If the 3 male teachers are seated at seat number 1,2, 12 or 1, 11, 12, the number of ways to arrange them = $(9!)(3!)(2)$ Therefore, the total number of arrangements = $(10!)(3!) + (9!)(3!)(2) = 26127360$

	Alternative:
	Number of arrangements in a circle without numbering = $(9!)(3!)$
	Since there are 12 people in total, therefore the total number of arrangements
	= (9!)(3!)(12) = 2612/360
9	No. of ways the committee can be formed $-4a \ln a + 4a \ln a + 1218$
	$= C_3 \cdot C_5 + C_4 \cdot C_4 = 1218$
(1)	No. of ways the committee can be seated without restriction = $(8-1)! = 5040$
(ii)	No. of ways the committee can be seated such that no two girls are seated next to each other $= 4! (5)(4)(3) = 1440$
	No. of ways the committee can be seated when there are two absentees = $\frac{(8-1)!}{2!}$
	= 2520
	or $(6-1)!^{6}C_{2} + (7-1)! = 2520$
10(a)(i)	Number of ways = $5!x 6! = 86400$
(ii)	Number of ways = $C_2^s \ge 2! \ge 2! \ge 7! = 564480$
(b)(i)	Number of ways = $4!x 5! = 2880$
(11)	Number of ways = $4!x \ 3x \ 4! = 1728$
11(i)	12! = 479001600
(ii)	$4! \times 6! \times 2 = 34560$
(iii)	$10! \times 3! = 21772800$
(iv)	$5! \times 7! \times 2 = 1209600$
12(i)	Number of ways = ${}^{12}C_4 \times {}^8C_4 \times {}^4C_4 \times (4!)^3$ or 12! = 479001600
	$(c + 2)^2 + 2^2$
(ii)	Number of ways = $\binom{6}{2} \times \binom{4}{2} \times \binom{2}{2} \times \binom{4}{2} \times \binom{4}{3} = 111974400$
(iii)	Number of ways = $({}^{6}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{2})^{2} \times (2 \times 2! \times 2!)^{3} = 4147200$