Probability

1	1		

8(i)	$P(Y) = \left(\frac{10}{25}\right) \left(\frac{8}{12}\right) + \left(\frac{15}{25}\right) \left(\frac{3}{10}\right) = \left(\frac{67}{150}\right)$
8(ii)	$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) = \frac{10}{25} + \frac{67}{150} - \left(\frac{10}{25}\right)\left(\frac{8}{12}\right) = \frac{29}{50}$
8(iii)	$P(X Y) = \frac{P(X \cap Y)}{P(Y)} = \frac{\frac{4}{15}}{\frac{67}{150}} = \frac{40}{67}$ $P(X) = \frac{2}{5} \neq P(X Y)$ Hence events X and Y are not independent.

8(a)
(i)
$$P(A) = \frac{9}{36} = \frac{1}{4}$$
 $P(B) = \frac{4}{36} = \frac{1}{9}$ $P(A \cap B) = \frac{1}{36}$
Since $P(A \cap B) = P(A) P(B)$, they are independent.
(ii) $A \cup B$ represents the event the card taken is either blue or numbered 1.
 $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{9}{36} + \frac{4}{36} - \frac{1}{36} = \frac{1}{3}$
(iii) $P(A'|B') = \frac{P(A' \cap B')}{P(B')} = \frac{1 - \frac{1}{3}}{\frac{32}{36}} = \frac{3}{4}$
(b) Method 1: Required probability $= 1 \times \frac{3}{35} \times \frac{2}{34} = \frac{3}{595}$ or 0.00504
Method 2: Required probability $= \frac{4}{36} \times \frac{3}{35} \times \frac{2}{34} \times 9 = \frac{3}{595}$
Method 3: Required probability $= \left(\frac{4}{3}\right) \left(\frac{1}{36}\right) \left(\frac{1}{35}\right) \left(\frac{1}{34}\right) 3! \times 9 = \frac{3}{595}$
Method 4: Required probability $= \frac{9\left(\frac{4}{3}\right)}{\binom{36}{3}} = \frac{3}{595}$
(c) Method 1: Required probability $= \frac{3^{32}C_{20}}{\frac{3^{6}C_{20}}{3C_{20}}} = \frac{52}{1683} = 0.030897 = 0.0309$

<u>Method 2</u>: Required probability $=\frac{32}{36} \times \frac{31}{35} \times \frac{30}{34} \times \frac{29}{33} \times \frac{28}{32} \times \dots \times \frac{17}{21} \times \frac{16}{20} \times \frac{15}{19} \times \frac{14}{18} \times \frac{13}{17}$ $=\frac{16}{36} \times \frac{15}{35} \times \frac{14}{34} \times \frac{13}{33} = 0.030897 = 0.0309$

3 (a)(i) $P(A) = 18/36 = \frac{1}{2}$ (or equivalent) P(B) = 2(5/6)(1/6) + (1/6)(1/6) = 11/36 (or equivalent) P(C) = 3/36 = 1/12 (or equivalent)

- (ii) P(B□C) = 2/36 = 1/18
 P(B)P(C) = 11/432
 Since P(B□C) □ P(B)P(C), so B and C are not independent.
- (iii) $P(C'|A) = P(A \Box C')/P(A)$ = (15/36) \Box (1/2) = 5/6 (or equivalent)
- (b)(i) P(call for Daisy and Daisy is at home)
 - =(0.2)(0.75)
 - = 0.15

4

(ii) P(person to whom call is made is at home)

$$= 0.15 + (0.3)(0.5) + (0.5)(0.8)$$
$$= 0.70$$

(a) (i)	P(all three cards even) = $\frac{10}{20} \frac{9}{19} \frac{8}{18} = \frac{2}{19}$	or	$=\frac{\binom{10}{3}}{\binom{20}{3}}=\frac{2}{19}$
(ii)	P(exactly one even) = $\frac{10}{20} \frac{10}{19} \frac{9}{18} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \frac{15}{38}$	or	$=\frac{\binom{10}{1}\binom{10}{2}}{\binom{20}{3}}=\frac{15}{38}$
(b)	$P(B) = \frac{4}{20} \frac{16}{19} + \frac{16}{20} \frac{15}{19} = \frac{4}{5}$		

6(a)	Since A and B are mutually exclusive, P(A + B) = P(A) + P(B)
(1)	$P(A \cup B) = P(A) + P(B)$
	$\Rightarrow P(B) = P(A \cup B) - P(A) = 0.6 - 0.2 = 0.4 \square$
6(a)	Since A and B are independent,
(ii)	$P(A \cap B) = P(A) \times P(B) = 0.2 P(B) \dots (1)$
	Also, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$\Rightarrow P(B) = P(A \cup B) - P(A) + P(A \cap B)$
	$\Rightarrow P(B) = 0.6 - 0.2 + 0.2P(B) [from (1)]$
	$\Rightarrow 0.8 P(B) = 0.4 \Rightarrow P(B) = 0.5 \Box$
6(b)	Required probability
(i)	$= (0.1 \times 0.01) + (0.6 \times 0.15) + (0.3 \times 0.25)$
	= 0.166
6(b)	$P(\text{good risks} \mid \text{no accidents}) = \frac{P(\text{good risks and no accidents})}{P(\text{good risks and no accidents})}$
(ii)	P(no accidents) = P(no accidents)
	$-\frac{0.1 \times (1-0.01)}{1-0.01}$ [from (i)]
	1-0.166
	$=\frac{0.099}{10000000000000000000000000000000000$
	0.834 278

Solution

6

(a) P(Kelvin is the first to pick a prime | game ends on the second draw) P(Kelvin picks a prime on his second draw) P(Game ends on the second draw) P(Kelvin picks a prime on his second draw) = P(Kelvin picks a prime on his second draw)+P(Raju picks a prime on his second draw) $=\frac{\frac{12}{20}\times\frac{11}{19}\times\frac{8}{18}}{\left(\frac{12}{20}\times\frac{11}{19}\times\frac{8}{18}\right)+\left(\frac{12}{20}\times\frac{11}{19}\times\frac{10}{18}\times\frac{8}{17}\right)}$ $=\frac{17}{27}$ (or 0.630) **(b)** P(Raju picks a prime first) = $\frac{3}{5}\left(\frac{2}{5}\right) + \frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right) + \frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right) + \dots$ $=\frac{6}{25}+\frac{6}{25}\left(\frac{9}{25}\right)+\frac{6}{25}\left(\frac{9}{25}\right)^2+...$ $=\frac{\frac{6}{25}}{1-\frac{9}{25}}$ $==\frac{3}{8}$ 7 (a) P(A | B') = $\frac{P(A \cap B')}{P(B')} = \frac{2}{3}$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2}{7}$ $P(A \cap B') = \frac{2}{3}P(B') = \frac{2}{3}(1 - P(B))$ $\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{2}{7} \mathbf{P}(\mathbf{B})$ $P(A) = P(A \cap B') + P(A \cap B) = \frac{2}{3}(1 - P(B)) + \frac{2}{7}P(B)$ $\frac{1}{2} = \frac{2}{3} - \frac{8}{21}P(B) \implies P(B) = \frac{7}{16}$

A and B are not independent as $P(A | B) \neq P(A)$

(b)(i) Probability =
$$1(\frac{1}{15}) + (\frac{14}{15})(\frac{1}{15}) + (\frac{14}{15})^2(\frac{1}{15}) = \frac{631}{3375}$$

(ii) Probability = $\frac{631}{3375} + \left(\frac{14}{15}\right)^3 \left(\frac{1}{15}\right) = \frac{12209}{50625}$

(i)
$$P_{10}b = 0.6^{3} = 0.216$$
.
(ii) $P_{rob} = (0.6 \times 0.8 + 0.4 \times 0.3)^{2} = 0.36$
 $OR = 0.5 = 0.2 W$
 $0.5 = 0.2 W = 0.2 W$
 $0.5 = 0.2 W = 0.2 W$
 $0.7 W$
 0