## Probability

| 8(i) | $P(Y)=\left(\frac{10}{25}\right)\left(\frac{8}{12}\right)+\left(\frac{15}{25}\right)\left(\frac{3}{10}\right)=\left(\frac{67}{150}\right)$ |
| :--- | :--- |
| 8(ii) | $P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)=\frac{10}{25}+\frac{67}{150}-\left(\frac{10}{25}\right)\left(\frac{8}{12}\right)=\frac{29}{50}$ |
| 8(iii) | $P(X \mid Y)=\frac{P(X \cap Y)}{P(Y)}=\frac{\frac{4}{15}}{\frac{67}{150}}=\frac{40}{67}$ |
|  | $P(X)=\frac{2}{5} \neq P(X \mid Y)$ <br>  <br> Hence events $X$ and $Y$ are not independent. |

## 2

| 8(a) <br> (i) | $\mathrm{P}(A)=\frac{9}{36}=\frac{1}{4} \quad \mathrm{P}(B)=\frac{4}{36}=\frac{1}{9} \quad \mathrm{P}(A \cap B)=\frac{1}{36}$ |
| :---: | :--- |
| (ince $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$, they are independent. |  |
| $A \cup B$ represents the event the card taken is either blue or numbered 1. |  |
| $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=\frac{9}{36}+\frac{4}{36}-\frac{1}{36}=\frac{1}{3}$ |  |
| (iii) | $\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{P\left(A^{\prime} \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{1-\frac{1}{3}}{\frac{32}{36}}=\frac{3}{4}$ |

(b) Method 1: Required probability $=1 \times \frac{3}{35} \times \frac{2}{34}=\frac{3}{595}$ or 0.00504

Method 2: Required probability $=\frac{4}{36} \times \frac{3}{35} \times \frac{2}{34} \times 9=\frac{3}{595}$
Method 3: Required probability $=\binom{4}{3}\left(\frac{1}{36}\right)\left(\frac{1}{35}\right)\left(\frac{1}{34}\right) 3!\times 9=\frac{3}{595}$ Method 4: Required probability $=\frac{9\binom{4}{3}}{\binom{36}{3}}=\frac{3}{595}$
(c) Method 1: Required probability $=\frac{{ }^{32} C_{20}}{{ }^{36} C_{20}}=\frac{52}{1683}=0.030897=0.0309$

Method 2: Required probability

$$
\begin{aligned}
& =\frac{32}{36} \times \frac{31}{35} \times \frac{30}{34} \times \frac{29}{33} \times \frac{28}{32} \times \ldots \times \frac{17}{21} \times \frac{16}{20} \times \frac{15}{19} \times \frac{14}{18} \times \frac{13}{17} \\
& =\frac{16}{36} \times \frac{15}{35} \times \frac{14}{34} \times \frac{13}{33}=0.030897=0.0309
\end{aligned}
$$

(a)(i) $\mathrm{P}(\mathrm{A})=18 / 36=1 / 2$ (or equivalent)
$\mathrm{P}(\mathrm{B})=2(5 / 6)(1 / 6)+(1 / 6)(1 / 6)=11 / 36$ (or equivalent)
$\mathrm{P}(\mathrm{C})=3 / 36=1 / 12$ (or equivalent)
(ii) $\mathrm{P}(\mathrm{B} \square \mathrm{C})=2 / 36=1 / 18$
$\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})=11 / 432$
Since $\mathrm{P}(\mathrm{B} \square \mathrm{C}) \square \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$, so B and C are not independent.
(iii) $\mathrm{P}\left(\mathrm{C}^{\prime} \mid \mathrm{A}\right)=\mathrm{P}\left(\mathrm{A} \square \mathrm{C}^{\prime}\right) / \mathrm{P}(\mathrm{A})$

$$
=(15 / 36) \square(1 / 2)=5 / 6 \text { (or equivalent) }
$$

(b)(i) P (call for Daisy and Daisy is at home)

$$
\begin{aligned}
& =(0.2)(0.75) \\
& =0.15
\end{aligned}
$$

(ii) P (person to whom call is made is at home)

$$
\begin{aligned}
& =0.15+(0.3)(0.5)+(0.5)(0.8) \\
& =0.70
\end{aligned}
$$

| (a) <br> (i) | $\mathrm{P}($ all three cards even $)=\frac{10}{20} \frac{9}{19} \frac{8}{18}=\frac{2}{19}$ | or | $=\frac{\binom{10}{3}}{\binom{20}{3}}=\frac{2}{19}$ |
| :---: | :---: | :---: | :---: |
| (ii) | $P(\text { exactly one even })=\frac{10}{20} \frac{10}{19} \frac{9}{18} \times\binom{ 3}{1}=\frac{15}{38}$ | or | $=\frac{\binom{10}{1}\binom{10}{2}}{\binom{20}{3}}=\frac{15}{38}$ |
| (b) | $\mathrm{P}(B)=\frac{4}{20} \frac{16}{19}+\frac{16}{20} \frac{15}{19}=\frac{4}{5}$ |  |  |

$$
\begin{aligned}
\mathrm{P}(A \cap B) & =\mathrm{P}(1 \text { st card } \leq 5 \& 2 \text { nd card } \geq 5) \\
& =\mathrm{P}(1 \text { st card }=5 \& 2 \text { nd card }>5)+\mathrm{P}(1 \text { st card }<5 \text { \& } 2 \text { nd card } \geq 5) \\
& =\frac{1}{20} \frac{15}{19}+\frac{4}{20} \frac{16}{19} \\
& =\frac{79}{380} \\
\mathrm{P}(B \mid A) & =\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}=\frac{\frac{79}{380}}{\frac{1}{4}}=\frac{79}{95}
\end{aligned}
$$

Using tree diagram:

(i)
(ii)

$$
\mathrm{P}(B)=\frac{4}{20} \frac{16}{19}+\frac{1}{20} \frac{15}{19}+\frac{15}{20} \frac{15}{19}=\frac{4}{5}
$$

(iii)

$$
\begin{aligned}
& \mathrm{P}(A \cap B)=\frac{4}{20} \frac{16}{19}+\frac{1}{20} \frac{15}{19}=\frac{79}{380} \\
& \mathrm{P}(B \mid A)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}=\frac{\frac{79}{380}}{\frac{1}{4}}=\frac{79}{95}
\end{aligned}
$$

| $6(a)$ (i) | Since $A$ and $B$ are mutually exclusive, $\begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \\ \Rightarrow & \mathrm{P}(B)=\mathrm{P}(A \cup B)-\mathrm{P}(A)=0.6-0.2=0.4 \end{aligned}$ |
| :---: | :---: |
| 6(a) <br> (ii) | Since $A$ and $B$ are independent, $\begin{equation*} \mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)=0.2 \mathrm{P}(B) \ldots \tag{1} \end{equation*}$ <br> Also, $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$ $\begin{aligned} & \Rightarrow \mathrm{P}(B)=\mathrm{P}(A \cup B)-\mathrm{P}(A)+\mathrm{P}(A \cap B) \\ & \Rightarrow \mathrm{P}(B)=0.6-0.2+0.2 \mathrm{P}(B) \quad[\text { from }(1)] \\ & \Rightarrow 0.8 \mathrm{P}(B)=0.4 \Rightarrow \mathrm{P}(B)=0.5 \end{aligned}$ |
| $6(b)$ (i) | Required probability $\begin{aligned} & =(0.1 \times 0.01)+(0.6 \times 0.15)+(0.3 \times 0.25) \\ & =0.166 \end{aligned}$ |
| $6(b)$ <br> (ii) | $\begin{aligned} \mathrm{P}(\text { good risks } \mid \text { no accidents }) & =\frac{\mathrm{P}(\text { good risks and no accidents })}{\mathrm{P}(\text { no accidents })} \\ & =\frac{0.1 \times(1-0.01)}{1-0.166} \quad[\text { from }(\mathbf{i})] \\ & =\frac{0.099}{0.834}=\frac{33}{278} \text { or } 0.119(3 \text { s.f. }) \end{aligned}$ |

## Solution

(a) P (Kelvin is the first to pick a prime $\mid$ game ends on the second draw)
$=\frac{\mathrm{P}(\text { Kelvin picks a prime on his second draw })}{\mathrm{P}(\text { Game ends on the second draw })}$
$=\frac{\mathrm{P}(\text { Kelvin picks a prime on his second draw })}{\mathrm{P}(\text { Kelvin picks a prime on his second draw })+\mathrm{P}(\text { Raju picks a prime on his second draw })}$
$=\frac{\frac{12}{20} \times \frac{11}{19} \times \frac{8}{18}}{\left(\frac{12}{20} \times \frac{11}{19} \times \frac{8}{18}\right)+\left(\frac{12}{20} \times \frac{11}{19} \times \frac{10}{18} \times \frac{8}{17}\right)}$
$=\frac{17}{27}$ (or 0.630 )
(b) $\mathrm{P}($ Raju picks a prime first $)=$

$$
\begin{aligned}
& \frac{3}{5}\left(\frac{2}{5}\right)+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)+\ldots \\
& =\frac{6}{25}+\frac{6}{25}\left(\frac{9}{25}\right)+\frac{6}{25}\left(\frac{9}{25}\right)^{2}+\ldots \\
& =\frac{\frac{6}{25}}{1-\frac{9}{25}} \\
& ==\frac{3}{8}
\end{aligned}
$$

7

$$
\begin{aligned}
& \text { (a) } \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}^{\prime}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{2}{3} \quad \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)}=\frac{2}{7} \\
& \mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}^{\prime}\right)=\frac{2}{3} \mathrm{P}\left(\mathrm{~B}^{\prime}\right)=\frac{2}{3}(1-\mathrm{P}(\mathrm{~B})) \quad \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{2}{7} \mathrm{P}(\mathrm{~B}) \\
& \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}^{\prime}\right)+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{2}{3}(1-\mathrm{P}(\mathrm{~B}))+\frac{2}{7} \mathrm{P}(\mathrm{~B}) \\
& \frac{1}{2}=\frac{2}{3}-\frac{8}{21} \mathrm{P}(\mathrm{~B}) \quad \Rightarrow \quad \mathrm{P}(\mathrm{~B})=\frac{7}{16}
\end{aligned}
$$

$A$ and $B$ are not independent as $P(A \mid B) \neq P(A)$
(b)(i) $\quad$ Probability $=1\left(\frac{1}{15}\right)+\left(\frac{14}{15}\right)\left(\frac{1}{15}\right)+\left(\frac{14}{15}\right)^{2}\left(\frac{1}{15}\right)=\frac{631}{3375}$
(ii) Probability $=\frac{631}{3375}+\left(\frac{14}{15}\right)^{3}\left(\frac{1}{15}\right)=\frac{12209}{50625}$

8
(i) $P_{\text {Fol }}=0.6^{3}=0.216$.
(ii) Prob $=(0.6 \times 0.8+0.4 \times 0.3)^{2}=0.36$
$O R$

$$
\begin{aligned}
& \text { prob }=0.6 \times 0.8 \times(0.6 \times 0.8+0.4 \times 0.3) \\
& +0.4 \times 0.3(0.6 \times 0.8+0.4 \times 0.3)=0.36
\end{aligned}
$$

(iii) $P$ (a chayeuging question and gave corrections

$$
=\frac{0.4 \times 0.3}{0.6 \times 0.8+0.4 \times 0.3}=0.2
$$

