Vectors Revision Worksheet (Planes)

1) The plane Π contains the point $B(3,1,0)$. Thus, two vectors parallel to plane Π will be
$\left(\begin{array}{c}-2 \\ -1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)-\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)$.

A normal vector of Π will be $\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right) \times\left(\begin{array}{c}-2 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}3 \\ -12 \\ -2\end{array}\right)$.
Therefore, vector equation of plane Π is
r. $\left(\begin{array}{c}3 \\ -12 \\ -2\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -12 \\ -2\end{array}\right)=-3$.

So, Cartesian equation of plane Π is $3 x-12 y-2 z=-3$.
2) Since O lies on the line l, thus the plane π contains $O A$ and parallel to $\lambda(\mathbf{i}+4 \mathbf{j}-3 \mathbf{k})$. Thus a normal to the plane is
$\left(\begin{array}{c}1 \\ 4 \\ -3\end{array}\right) \times\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ -3 \\ -4\end{array}\right)$
\therefore Eqn of the plane π is $r \cdot\left(\begin{array}{c}0 \\ -3 \\ -4\end{array}\right)=0$
3) Vector equation of plane is $\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+s\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)+t\left(\begin{array}{c}3 \\ -2 \\ -4\end{array}\right)$, where $s, t \in \square$
4) $l_{1}: \mathbf{r}=\left(\begin{array}{c}1 \\ 5 \\ 12\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right), \lambda \in \square$,
$l_{2}: \mathbf{r}=\left(\begin{array}{c}1 \\ 5 \\ 12\end{array}\right)+\mu\left(\begin{array}{c}8 \\ 11 \\ 6\end{array}\right), \mu \in \square$
Consider $\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right) \times\left(\begin{array}{c}8 \\ 11 \\ 6\end{array}\right)=\left(\begin{array}{c}34 \\ -34 \\ 17\end{array}\right)=17\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$

A normal to Π_{1} is $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$.
$\Pi_{1}: \mathbf{r}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ 5 \\ 12\end{array}\right)\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right) \Rightarrow \mathbf{r}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=4$
5) $\overrightarrow{A B}=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)-\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=2\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
$\overrightarrow{A C}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)-\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)$
$\overrightarrow{A B} \times \overrightarrow{A C}=2\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right) \times\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)=4\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
$\Pi: \underset{\sim}{r} \bullet\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=5$

6)

Method 1

Take a point in Π_{1}, say $C(13,0,0)$ which satisfies $r \square\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)=13$
$\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\left(\begin{array}{c}12 \\ -7 \\ 10\end{array}\right)$
$\operatorname{Proj} \overrightarrow{A C}$ on $\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)=\left|\frac{\overrightarrow{A C} \square \mathbf{n}}{|\mathbf{n}|}\right|=\left|\left(\begin{array}{c}12 \\ -7 \\ 10\end{array}\right) \square \frac{1}{\sqrt{21}}\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)\right|$
$=2 \sqrt{21}$

Method 2

This method useful for finding the foot of perpendicular
Vector equation of a line through A and parallel to $\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right): \mathbf{r}=\left(\begin{array}{c}1 \\ 7 \\ -10\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right) \quad \lambda \in R$

Let C be the foot of the perpendicular from A to Π_{1}
Then $\overrightarrow{O C}=\left(\begin{array}{c}1+\lambda \\ 7+2 \lambda \\ -10-4 \lambda\end{array}\right)$
C lies on Π_{1} : $\left(\begin{array}{c}1+\lambda \\ 7+2 \lambda \\ -10-4 \lambda\end{array}\right) \square\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)=13$
$\Rightarrow \lambda=-2$
$\overrightarrow{O C}=\left(\begin{array}{c}1+\lambda \\ 7+2 \lambda \\ -10-4 \lambda\end{array}\right)=\left(\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right) ; \overrightarrow{A C}=\left(\begin{array}{c}1+\lambda-1 \\ 7+2 \lambda-7 \\ -10-4 \lambda+10\end{array}\right)$
$\Rightarrow \mathrm{d}=A C=\sqrt{84}=2 \sqrt{21}$
7) A line through B perpendicular to plane Π is

$$
\underset{\sim}{r}=\left(\begin{array}{c}
2 \tag{1}\\
3 \\
-1
\end{array}\right)+\alpha\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right), \quad \alpha \in \square .
$$

Sub (1) into equation of plane:

$$
\begin{aligned}
& \left(\begin{array}{c}
2+\alpha \\
3-\alpha \\
-1-2 \alpha
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)=9 \\
& 2+\alpha-3+\alpha+2+4 \alpha=9 \\
& \therefore \alpha=\frac{4}{3}
\end{aligned}
$$

Hence position vector $O D$ of foot of perpendicular from B to Π is

$$
\overrightarrow{O D}=\left(\begin{array}{c}
2+\frac{4}{3} \\
3-\frac{4}{3} \\
-1-\frac{8}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
10 \\
5 \\
-11
\end{array}\right)
$$

8) At the point of intersection $\mathrm{P},\left(\begin{array}{c}1+l \\ 1 \\ 3-2 l\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=4$

$$
\Rightarrow 1+l+2-3+2 l=4 \Rightarrow l=\frac{4}{3} \text { Therefore }\left(\begin{array}{c}
1+\frac{4}{3} \\
1 \\
3-\frac{8}{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{7}{3} \\
1 \\
\frac{1}{3}
\end{array}\right)
$$

The point of intersection is $\left(\frac{7}{3}, 1, \frac{1}{3}\right)$.

9) Method 1

Line passing through Q and perpendicular to Π_{1},
$l: \mathbf{r}=\left(\begin{array}{l}4 \\ 0 \\ 8\end{array}\right)+\alpha\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right), \alpha \in \square$
Since R lies on $l, \overrightarrow{O R}=\left(\begin{array}{c}4+2 \alpha \\ -2 \alpha \\ 8+\alpha\end{array}\right)$ for some $\alpha \in \square$
At point of intersection of l and Π_{1}, R

$$
\begin{aligned}
& \left(\begin{array}{c}
4+2 \alpha \\
-2 \alpha \\
8+\alpha
\end{array}\right)\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=4 \\
\Rightarrow & 8+4 \alpha+4 \alpha+8+\alpha=4 \\
\Rightarrow & \alpha=-\frac{4}{3}
\end{aligned}
$$

$\overrightarrow{O R}=\left(\begin{array}{c}4 / 3 \\ 8 / 3 \\ 20 / 3\end{array}\right)$ (shown)

Method 2

$\overrightarrow{R Q}=$ Projection of $\overrightarrow{P Q}$ onto the normal

$$
=\left(\frac{\overrightarrow{P Q} \backslash \mathbf{n}_{1}}{\left|\mathbf{n}_{1}\right|}\right) \frac{\mathbf{n}_{1}}{\left|\mathbf{n}_{1}\right|}
$$

$=\left(\frac{\left(\begin{array}{c}3 \\ -5 \\ -4\end{array}\right)\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)}{\sqrt{4+4+1}}\right) \frac{\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)}{\sqrt{4+4+1}}$
$=\left(\frac{4}{3}\right)\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}8 / 3 \\ -8 / 3 \\ 4 / 3\end{array}\right)$
$\overrightarrow{O R}=\overrightarrow{O Q}-\overrightarrow{R Q}=\left(\begin{array}{l}4 \\ 0 \\ 8\end{array}\right)-\left(\begin{array}{c}8 / 3 \\ -8 / 3 \\ 4 / 3\end{array}\right)=\left(\begin{array}{c}4 / 3 \\ 8 / 3 \\ 2 / 3\end{array}\right)$ (shown)
10) Method 1:
$-2 x-y+5 z=3$
$2 x+y+2 z=4$
Using GC, $2 x+y=2 ; z=1$.
When $x=\lambda, y=2-2 \lambda \Rightarrow \underset{\sim}{r}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right), \lambda \in \mathbf{R}$.

Method 2:

Normal of $l:\left(\begin{array}{l}-2 \\ -1 \\ 5\end{array}\right) \times\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}-7 \\ 14 \\ 0\end{array}\right)=-7\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)$.
Let $x=0,-y+5 z=3 ; \quad y+2 z=4$.
Solving simultaneously, $y=2, z=1$.

$$
\Rightarrow \underset{\sim}{r}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right), \lambda \in \mathbf{R}
$$

11)

$\Pi_{1}: x+2 y-4 z=13$
$\Pi_{2}: x+3 y+3 z=-8$
By G.C. solve equations (1) \& (2)
The vector equation of the line of intersection is
$l: \mathbf{r}=\left(\begin{array}{c}55 \\ -21 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}18 \\ -7 \\ 1\end{array}\right)$ where $\lambda \in \square$. or $\mathbf{r}=\left(\begin{array}{c}1 \\ 0 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}18 \\ -7 \\ 1\end{array}\right)$ etc
12) $\Pi_{1}: \underset{\sim}{r} \bullet\left(\begin{array}{c}5 \\ -2 \\ 1\end{array}\right)=14$
$\Pi_{2}: \underset{\sim}{r} \cdot\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=5$

Direction vector of $L=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \times\left(\begin{array}{c}5 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}5 \\ 9 \\ -7\end{array}\right)$

$$
\begin{align*}
& x+y+2 z=5 \cdots \tag{1}\\
& 5 x-2 y+z=14 \tag{2}
\end{align*}
$$

Put $x=2$,
from (1), $\quad y+2 z=3$
from (2), $-2 y+z=4$
(3) $-2(4) \Rightarrow 5 y=-5$
$\Rightarrow y=-1$
$\Rightarrow z=4+2(-1)=2$

$$
\begin{aligned}
& \therefore L: \underset{\sim}{r}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
5 \\
9 \\
-7
\end{array}\right), \lambda \in \mathfrak{R} \\
& \therefore \quad p=-1, q=2, r=5, s=9
\end{aligned}
$$

13) Angle between π_{1} and π_{2}
$=\cos ^{-1}\left|\frac{\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right)}{\sqrt{2^{2}+1^{2}+2^{2}} \sqrt{26}}\right|$
$=\cos ^{-1}\left|\frac{8-3-2}{3 \sqrt{26}}\right|$
$=78.7^{\circ}$
14)

$\cos \theta=\frac{\left|\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)\right|}{\sqrt{9} \sqrt{9}}$
$\cos \theta=\frac{4}{9}$
$\theta=64^{\circ}$ (nearest degree)
15) Angle between $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)$
$=\cos ^{-1}\left(\frac{\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)}{\sqrt{1^{2}+2^{2}+(-1)^{2}} \sqrt{1^{2}+0^{2}+(-2)^{2}}}\right)$
$=\cos ^{-1} \frac{3}{\sqrt{30}}=56.8^{\circ}$
\therefore Angle between l and Π is $90^{\circ}-56.8^{\circ}$

$$
\left.=33.2^{\circ} \text { (1d.p. }\right)
$$

$$
\begin{aligned}
& \text { 16) Let } \lambda=2, \\
& \overrightarrow{O A}
\end{aligned}=\mathbf{j}+\mathbf{k}+2(\mathbf{i}-2 \mathbf{j}+\mathbf{k})=2 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k} . ~ \begin{aligned}
\overrightarrow{A B} & =(2 \mathbf{i}+\mathbf{j}+4 \mathbf{k})-(2 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}) \\
& =4 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

$x+2 y+3 z=5 \Rightarrow \mathbf{r}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=5$
Angle between $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 4 \\ 1\end{array}\right)$
$=\cos ^{-1}\left(\frac{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 4 \\ 1\end{array}\right)}{\sqrt{1^{2}+2^{2}+3^{2}} \sqrt{4^{2}+1^{2}}}\right)$
$=\cos ^{-1} \frac{11}{\sqrt{14} \sqrt{17}}=44.5^{\circ}$
Acute angle between the line $A B$ and the plane $\pi_{1}=90-44.5^{\circ}=45.5^{\circ}$
17)
(13) i) $\pi_{1}: r \cdot\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)=4$

Line $m: r=\left(\begin{array}{c}9 \\ 2 \\ -2\end{array}\right)+\lambda\binom{2}{-1}$
At $F,\left[\left(\begin{array}{c}9 \\ 2 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)\right] \cdot\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)=4$

$22+6 \lambda=4$
$\lambda=-3$
$\binom{9}{2}-3(2$
$\overrightarrow{O F}=\left(\begin{array}{c}9 \\ 2 \\ -2\end{array}\right)-3\binom{2}{-1}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$
\therefore Foot of perpendicular, $F(3,-1,1)$.
$O R$

Choose a pt B in Π_{1} such that $\overrightarrow{O B}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$. $\overrightarrow{A F}=$ projection of $\overrightarrow{A B}$ on n
$=(\overrightarrow{n B} \cdot \hat{n}) \hat{n}$
$=\left[\left(\begin{array}{c}-7 \\ -2 \\ 2\end{array}\right) \cdot \frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)\right] \frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
$=-\frac{18}{6}\binom{2}{-1}$
$=-3\left(\begin{array}{c}2 \\ 1 \\ 1\end{array}\right)$
$\overrightarrow{O F}=\left(\begin{array}{c}9 \\ 2 \\ -2\end{array}\right)-3\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{c}3 \\ -1 \\ -1\end{array}\right)$
\therefore Foot of perpendicular, $F(3,-1,1)$.
(13) ii) $\left(\begin{array}{c}-3 \\ 2 \\ -7\end{array}\right) \times\left(\begin{array}{c}-1 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{l}1 \\ 5 \\ 1\end{array}\right)$
$\pi_{2}:\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 5 \\ 1\end{array}\right)=2+5-2=5$
$\therefore \quad \leq \cdot\left(\begin{array}{l}1 \\ 5 \\ 1\end{array}\right)=5$
$2 x+y-z=4$
$x+5 y+z=5$
From GC: $x=\frac{5}{3}+\frac{2}{3} z$
$y=\frac{2}{3}-\frac{1}{3} z$
$\therefore l: \underline{r}=\left(\begin{array}{c}5 / 3 \\ 2 / 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right), \lambda \in \mathbb{R}$
18) $\Pi_{1}:$ r. $\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right)=2$
$\Pi_{2}: \mathbf{r} .\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=15$
(i) $\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=10-3-20=-13$
$\cos \theta=\frac{\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)}{\left.\left|\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right)\right|\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right) \right\rvert\,}=\frac{-13}{\sqrt{50} \sqrt{30}}$
$\theta=109.6^{\circ}$
The acute angle between the planes $=70^{\circ}$ (nearest degree)
(ii) $\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right) \times\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=\left(\begin{array}{c}-11 \\ -33 \\ 11\end{array}\right)$ parellel to $\left(\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right)$

Equation of the line through A and parallel to the line of intersection is

$$
\mathbf{r}=\left(\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right)+\alpha\left(\begin{array}{c}
-1 \\
-3 \\
1
\end{array}\right) \text {, where } \alpha \in \mathbf{R}
$$

(iii) Let the equation of the line through A perpendicular to Π_{2} be

$$
\mathbf{r}=\left(\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right)+\lambda\left(\begin{array}{l}
2 \\
1 \\
5
\end{array}\right)
$$

At the point of intersection,
$\left(\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=15$
$2(1+2 \lambda)+(-2+\lambda)+5(-3+5 \lambda)=15$

$$
\lambda=1
$$

The position vector of the foot of the perpendicular from A to Π_{2} is $\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$.

