
 

Vectors Revision Worksheet (Planes) 

 

1) The plane   contains the point B (3, 1, 0). Thus, two vectors parallel to plane   will be 
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A normal vector of   will be 
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Therefore, vector equation of plane   is  
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So, Cartesian equation of plane  is 32123  zyx . 

 

2) Since O lies on the line l, thus the plane  contains OA and parallel to (i + 4j – 3k). Thus 

a normal to the plane is  
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 Eqn of the plane   is r . 
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3) Vector equation of plane is 
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A normal to 1Π  is 
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5)  
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6)  

Method 1 

Take a point in 1 , say  C ( 13,0,0) which satisfies 
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Method 2      
This method useful for finding the foot of perpendicular 

 

Vector equation of a line through A and parallel to 
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Let  C be the foot of the perpendicular from A to 
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7) A line through B perpendicular to plane   is 
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Sub (1) into equation of plane: 
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Hence position vector OD


 of foot of perpendicular from B to   is 
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8) At the point of intersection P, 
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The point of intersection is (
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9)  Method 1 

Line passing through Q and perpendicular to 1Π ,  
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Method 2 
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10) Method 1: 

2 5 3

2 2 4

x y z

x y z

   

  
 

 

Using GC,  2x + y = 2; z = 1.   

 

When x =  , y = 2 - 2   

0 1

2 2 , .

1 0

r  

   
   

       
   
   

R  

 

Method 2:  

Normal of l :
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Let x = 0,  - y + 5z = 3; y + 2z = 4.  

 

Solving simultaneously, y = 2, z = 1. 
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11)  

1  :  x + 2y − 4z = 13      ……. (1) 

2  :  x + 3y + 3z = −8      ……. (2)    

By G.C. solve equations (1) & (2) 

The vector equation of the line of intersection is 
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13)  Angle between 1 and 2  
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16) Let 2  , 
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Acute angle between the line AB and the plane 1  = 90 - 44.5 = 45.5 
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        The acute angle between the planes = 70 (nearest degree) 
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       Equation of the line through A and parallel to the line of intersection is  
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(iii) Let the equation of the line through A perpendicular to 2 be  
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At the point of intersection,  
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The position vector of the foot of the perpendicular from A  to  2  is 
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