Vectors Revision Worksheet (Lines)

1. $\mathbf{a}=\left(\begin{array}{c}2 \\ 4 \\ -4\end{array}\right) \mathbf{b}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$

Angle between the two vectors
$=\cos ^{-1}\left(\frac{\left(\begin{array}{c}2 \\ 4 \\ -4\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)}{\sqrt{36} \sqrt{3}}\right)$
$=\cos ^{-1}\left(\frac{-1}{\sqrt{3}}\right)=125.3^{\circ}$
Vector equation of the line $l$ passing through A and B is
$\mathbf{r}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 5 \\ -5\end{array}\right), \lambda \in \square$
In Cartesian form,
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 5 \\ -5\end{array}\right)$
$\therefore x-1=\frac{y+1}{5}=\frac{1-z}{5}$
2. $\overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right), \overrightarrow{\mathrm{OQ}}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right), \overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}-1 \\ 5 \\ 2\end{array}\right)$

Angle OPQ
$=\cos ^{-1}\left(\frac{\overrightarrow{\mathrm{PO}} \cdot \overrightarrow{\mathrm{PQ}}}{|\overrightarrow{\mathrm{PO}}||\mathrm{PQ}|}\right)$
$=\cos ^{-1}\left(\frac{\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 5 \\ 2\end{array}\right)}{\sqrt{14} \sqrt{30}}\right)$
$=\cos ^{-1}\left(\frac{15}{\sqrt{420}}\right)=43.0^{\circ}(1 \mathrm{dp})$
Vector equation of the line $l$ passing through P and Q is
$\mathbf{r}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 5 \\ 2\end{array}\right), \lambda \in \square$
In Cartesian form,
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 5 \\ 2\end{array}\right)$
$\therefore 2-x=\frac{y-3}{5}=\frac{z-1}{2}$
3
$\mathrm{L}_{1}: \mathbf{r}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mathrm{s}(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$
$L_{2}: \mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\mathrm{t}(2 \mathbf{i}+\mathbf{j})$.
If $L_{1}$ and $L_{2}$ intersect,
$3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mathrm{s}(\mathbf{i}+2 \mathbf{j}-\mathbf{k})=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\mathrm{t}(2 \mathbf{i}+\mathbf{j})$
$3+s=2+2 t$
$1+2 s=2+t$
$2-s=1 \Rightarrow s=1$
When $s=1, t=1$
Therefore $2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+1(2 \mathbf{i}+\mathbf{j})=4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$
Hence point of intersection is $(4,3,1)$.
4. $L_{1}: \mathbf{r}=3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mathrm{s}(\mathbf{i}+2 \mathbf{j}-\mathbf{k})$
$L_{2}: \mathbf{r}=\mathbf{2} \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\mathrm{t}(2 \mathbf{i}+\mathbf{j}+\mathbf{k})$
Since $(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \neq \mathrm{m}(2 \mathbf{i}+\mathbf{j}+\mathbf{k})$ for some $\mathrm{m} \in \square, \mathrm{L}_{1}$ is not parallel to $L_{2}$.
If $L_{1}$ and $L_{2}$ intersect,
$3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\mathrm{s}(\mathbf{i}+2 \mathbf{j}-\mathbf{k})=\mathbf{2 i}+2 \mathbf{j}+\mathbf{k}+\mathrm{t}(2 \mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
\begin{aligned}
& 3+s=2+2 t \ldots(1) \\
& 1+2 s=2+t \ldots(2) \\
& 2-s=1+t \ldots \text { (3) }
\end{aligned}
$$

Solving (1) and (3),
$5=3+3 t \Rightarrow t=2 / 3$
$s=2+4 / 3-3=1 / 3$
Sub into (2)
LHS $=1+2(1 / 3)=5 / 3$
RHS $=2+2 / 3=8 / 3$
Since LHS $\neq$ RHS, $L_{1}$ and $L_{2}$ do not intersect.
Hence $L_{1}$ and $L_{2}$ are skew lines.

## 5.

If lines intersect,

$$
\begin{aligned}
& 5 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}+\mathbf{k})=3 \mathbf{i}+\mathbf{j}+\mathbf{k}+\mu(4 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}) \\
& 5+\lambda=3+4 \mu \ldots(1) \\
& 2+3 \lambda=1+7 \mu \ldots(2) \\
& 4+\lambda=1+5 \mu \ldots(3)
\end{aligned}
$$

Solving (1) and (3), $1=2-\mu \Rightarrow \mu=1$
When $\mu=1, \lambda=2$
Therefore position vector point of intersection $=3 \mathbf{i}+\mathbf{j}+\mathbf{k}+1(4 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k})$
$=7 \mathbf{i}+8 \mathbf{j}+6 \mathbf{k}$
Acute angle between the lines $=\cos ^{-1}\left|\frac{\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}4 \\ \sqrt{11} \sqrt{90} \\ 5\end{array}\right)\left|=17.5^{\circ}(1 \mathrm{dp}),{ }^{2}\right|}{}\right|$
6.

Perpendicular distance from O to the line
$=\left|\frac{\left(\begin{array}{l}4 \\ 2 \\ 5\end{array}\right) \times\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)}{\sqrt{9}}\right|=\left|\frac{\left(\begin{array}{c}12 \\ 6 \\ -12\end{array}\right)}{3}\right|=6$
7.

Perpendicular distance from A to the line


## 8.

Vector equation of the line passing through $A$ and $B$ is
$\mathbf{r}=\left(\begin{array}{l}4 \\ 7 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right), \lambda \in \square$
Since $P$ is on line $A B$,
$\overrightarrow{\mathrm{OP}}=\left(\begin{array}{l}4 \\ 7 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right)$, for some $\lambda \in \square$
Since OP is perpendicular to $A B$,
$\overrightarrow{\mathrm{OP}} \square\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right)=0$
$\left[\left(\begin{array}{l}4 \\ 7 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right)\right] \square\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right)=0$
$4+\lambda-35+25 \lambda+4+\lambda=0$
$\lambda=1$
$\therefore \overrightarrow{\mathrm{OP}}=\left(\begin{array}{l}4 \\ 7 \\ 4\end{array}\right)+(1)\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right)$
$=\left(\begin{array}{l}5 \\ 2 \\ 5\end{array}\right)$
9.

Since N is on line,
$\overrightarrow{\mathrm{ON}}=\left(\begin{array}{l}2 \\ 1 \\ 9\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)$, for some $\lambda \in \square$

Since $P N$ is perpendicular to $A B$,
$\overrightarrow{\mathrm{PN}} \square\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)=0$
$\left[\left(\begin{array}{l}2 \\ 1 \\ 9\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)-\left(\begin{array}{c}2 \\ 3 \\ -4\end{array}\right)\right] \square\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)=0$
$\left[\left(\begin{array}{c}0 \\ -2 \\ 13\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)\right] \square\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)=0$
$4 \lambda-10+25 \lambda+52+16 \lambda=0$
$45 \lambda=-42$
$\lambda=-\frac{14}{15}$
$\overrightarrow{\mathrm{ON}}=\left(\begin{array}{l}2 \\ 1 \\ 9\end{array}\right)-\frac{14}{15}\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)$
$=\left(\begin{array}{c}2 / 15 \\ -11 / 3 \\ 79 / 15\end{array}\right)$
10.(i)
$x-1=\frac{y+1}{2}=\frac{z+1}{-2}=\lambda$
$x=1+\lambda, y=-1+2 \lambda, z=-1-2 \lambda$
An vector equation of $l_{1}$ is $\mathbf{r}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right), \lambda \in \square$
Vector equation of the line passing through $A$ and $B$ is
$\mathbf{r}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ -8\end{array}\right), \mu \in \square$
(ii)

Since $(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}) \neq \mathrm{m}(\mathbf{i}-\mathbf{j}-8 \mathbf{k})$ for some $\mathrm{m} \in \square$, lines are not parallel.
If $l_{1}$ and $l_{2}$ intersect,

$$
\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
-8
\end{array}\right)
$$

$1+\lambda=1+\mu \ldots(1)$
$-1+2 \lambda=-2-\mu$. .(2)
$-1-2 \lambda=3-8 \mu \ldots$...(3)
Solving (1) and (2),
$3 \lambda=-1 \Rightarrow \lambda=-1 / 3$
$\mu=-1 / 3$
Sub into (3)
LHS $=-1-2(-1 / 3)=-1 / 3$
RHS $=3-8(-1 / 3)=17 / 3$
Since LHS $\neq$ RHS, $l_{1}$ and $l_{2}$ do not intersect.
Hence $l_{1}$ and $l_{2}$ are skew lines.
(iii) Length of projection of $\overrightarrow{A B}$ on $l_{1}$
$=\frac{\left(\left.\left(\begin{array}{c}1 \\ -1 \\ -8\end{array}\right)\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right) \right\rvert\,\right.}{\sqrt{9}}=\frac{15}{3}=5$
(iv)

Since N is on line,
$\overrightarrow{\mathrm{ON}}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$, for some $\lambda \in \square$
Since AN is perpendicular to line,

$$
\overrightarrow{\mathrm{AN}} \square\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)=0
$$

$$
\left[\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)\right] \square\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)=0
$$

$$
\left[\left(\begin{array}{c}
0 \\
1 \\
-4
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)\right] \square\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)=0
$$

$$
\lambda+2+4 \lambda+8+4 \lambda=0
$$

$$
9 \lambda=-10
$$

$\lambda=-\frac{10}{9}$
$\overrightarrow{\mathrm{ON}}=\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)-\frac{10}{9}\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$
$=\left(\begin{array}{c}-1 / 9 \\ -29 / 9 \\ 11 / 9\end{array}\right)$
$\overrightarrow{\mathrm{AN}}=\left(\begin{array}{c}-1 / 9 \\ -29 / 9 \\ 11 / 9\end{array}\right)-\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)=\left(\begin{array}{l}-10 / 9 \\ -11 / 9 \\ -16 / 9\end{array}\right)$
Shortest distance between the point A and $l_{1}$
$=\frac{1}{9} \sqrt{100+121+256}=\frac{\sqrt{477}}{9}$

11(i)
Vector equation of the line $l$ passing through A and B is
$\mathbf{r}=\left(\begin{array}{c}5 \\ 4 \\ 10\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right), \lambda \in \square$
In Cartesian form,
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}5 \\ 4 \\ 10\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right)$
$\therefore \frac{x-5}{3}=\frac{z-10}{4}, y=4$
(ii) Length of projection of $\overrightarrow{A C}$ on line $A B$
$=\frac{\left.\left(\begin{array}{c}-10 \\ 5 \\ -5\end{array}\right)\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right) \right\rvert\,}{\sqrt{25}}=\frac{|-50|}{5}=10$
(iii) $|\overrightarrow{A C}|=\sqrt{100+25+25}=\sqrt{150}=5 \sqrt{6}$

Perpendicular distance from $C$ to the line $A B$
$=\sqrt{150-100}=\sqrt{50}=5 \sqrt{2}$

$$
\begin{aligned}
& \overrightarrow{A N}=-10 \frac{\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)}{\sqrt{25}}=\left(\begin{array}{c}
-6 \\
0 \\
-8
\end{array}\right) \\
& \therefore \overrightarrow{O N}=\overrightarrow{A N}+\overrightarrow{O A}=\left(\begin{array}{c}
-6 \\
0 \\
-8
\end{array}\right)+\left(\begin{array}{c}
5 \\
4 \\
10
\end{array}\right)=\left(\begin{array}{c}
-1 \\
4 \\
2
\end{array}\right)
\end{aligned}
$$

